Skip to main content
Log in

Association of Zinc Status with Matrix Metalloproteinases, Advanced Glycation End-Products, and Blood Pressure in Patients with Chronic Kidney Disease

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Inflammation, oxidative stress, and hypertension trigger the development of chronic kidney disease (CKD). Zinc is known to have antioxidant and anti-inflammatory properties and a possible role in regulating blood pressure. The aim of this study was to investigate the correlation of serum zinc with matrix metalloproteinase-2 and-9 (MMP-2, MMP-9), advanced glycation end products (AGEs), and blood pressure in patients with CKD. This cross-sectional study included 90 patients with CKD. Serum zinc and the levels of MMP-2, MMP-9, AGEs, and creatinine were measured using validated biochemical methods. Three 24-h food recalls were completed to evaluate dietary zinc intake. Systolic and diastolic blood pressure (SBP, DBP) were measured using a digital sphygmomanometer. Participants’ mean age was 60.68 ± 8.81 years. The prevalence of zinc deficiency in our participants was 10%. Serum zinc was negatively correlated with MMP-9 (r =  − 0.231, p = 0.032) and creatinine (r =  − 0.304, p = 0.004). However, after adjusting for confounding variables, the association between serum zinc and MMP-9 was near the significance level (β =  − 0.174, p = 0.09) and zinc remained in the model as one of the predictors. Serum zinc was positively correlated with the dietary intake of zinc (r = 0.241, p = 0.025) and estimated glomerular filtration rate (eGFR) (r = 0.259, p = 0.015). In conclusion, our results showed that serum zinc might be one of the predictors of serum MMP-9 in patients with CKD. In addition, serum zinc was positively associated with its dietary intake and eGFR. Future longitudinal studies or clinical trials are required to reveal any causal association between zinc status and profibrotic or inflammatory biomarkers among patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the rules and regulations of the Research Center for Biochemistry and Nutrition in Metabolic Diseases at the Kashan University of Medical Science, but are available from the corresponding author on reasonable request.

References

  1. Carney EF (2020) The impact of chronic kidney disease on global health. Nat Rev Nephrol 16(5):251. https://doi.org/10.1038/s41581-020-0268-7

    Article  PubMed  Google Scholar 

  2. Anderson CA, Nguyen HA, Rifkin DE (2016) Nutrition interventions in chronic kidney disease. Med Clin North Am 100(6):1265–1283. https://doi.org/10.1016/j.mcna.2016.06.008

    Article  PubMed  Google Scholar 

  3. Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA (2016) Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the vitamin D receptor. J Steroid Biochem Mol Biol 163:77–87. https://doi.org/10.1016/j.jsbmb.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  4. Damianaki K, Lourenco JM, Braconnier P, Ghobril JP, Devuyst O, Burnier M et al (2020) Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol Dial Transplant 35(7):1163–1170. https://doi.org/10.1093/ndt/gfz065

    Article  CAS  PubMed  Google Scholar 

  5. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14(3–4):331–341. https://doi.org/10.1023/a:1012905406548

    Article  CAS  PubMed  Google Scholar 

  6. Alam S, Kelleher SL (2012) Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 4(8):875–903. https://doi.org/10.3390/nu4080875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rezazadegan M, Soheilipour M, Tarrahi MJ, Amani R (2022) Correlation between zinc nutritional status with serum zonulin and gastrointestinal symptoms in diarrhea-predominant irritable bowel syndrome: a case-control study. Dig Dis Sci 67(8):3632–3638. https://doi.org/10.1007/s10620-021-07368-6

    Article  CAS  PubMed  Google Scholar 

  8. Skalny AV, Aschner M, Tinkov AA (2021) Zinc. Adv Food Nutr Res 96:251–310. https://doi.org/10.1016/bs.afnr.2021.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fathi M, Alavinejad P, Haidari Z, Amani R (2020) The effects of zinc supplementation on metabolic profile and oxidative stress in overweight/obese patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. J Trace Elem Med Biol 62:126635. https://doi.org/10.1016/j.jtemb.2020.126635

    Article  CAS  PubMed  Google Scholar 

  10. Cheng Z, Limbu MH, Wang Z, Liu J, Liu L, Zhang X, et al (2017) MMP-2 and 9 in chronic kidney disease. Int J Mol Sci 18(4). https://doi.org/10.3390/ijms18040776

  11. Kratochvilová M, Zakiyanov O, Kalousová M, Kříha V, Zima T, Tesař V (2011) Associations of serum levels of advanced glycation end products with nutrition markers and anemia in patients with chronic kidney disease. Ren Fail 33(2):131–137. https://doi.org/10.3109/0886022x.2010.541581

    Article  PubMed  Google Scholar 

  12. Linden E, Cai W, He JC, Xue C, Li Z, Winston J et al (2008) Endothelial dysfunction in patients with chronic kidney disease results from advanced glycation end products (AGE)-mediated inhibition of endothelial nitric oxide synthase through RAGE activation. Clin J Am Soc Nephrol 3(3):691–698. https://doi.org/10.2215/cjn.04291007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kousios A, Kouis P, Panayiotou AG (2016) Matrix metalloproteinases and subclinical atherosclerosis in chronic kidney disease: a systematic review. Int J Nephrol 2016:9498013. https://doi.org/10.1155/2016/9498013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nosrati R, Kheirouri S, Ghodsi R, Ojaghi H (2019) The effects of zinc treatment on matrix metalloproteinases: a systematic review. J Trace Elem Med Biol 56:107–115. https://doi.org/10.1016/j.jtemb.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  15. Provenzano M, Andreucci M, Garofalo C, Faga T, Michael A, Ielapi N, et al (2020) The association of matrix metalloproteinases with chronic kidney disease and peripheral vascular disease: a light at the end of the tunnel? Biomolecules 10(1). https://doi.org/10.3390/biom10010154

  16. Vielhauer V, Mayadas TN (2007) Functions of TNF and its receptors in renal disease: distinct roles in inflammatory tissue injury and immune regulation. Semin Nephrol 27(3):286–308. https://doi.org/10.1016/j.semnephrol.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez J, Mouttalib S, Delage C, Calise D, Maoret JJ, Pradère JP et al (2013) Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis. Biochem Biophys Res Commun 438(2):257–263. https://doi.org/10.1016/j.bbrc.2013.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boor P, Floege J (2011) Chronic kidney disease growth factors in renal fibrosis. Clin Exp Pharmacol Physiol 38(7):441–450. https://doi.org/10.1111/j.1440-1681.2011.05487.x

    Article  CAS  PubMed  Google Scholar 

  19. Zakiyanov O, Kalousová M, Zima T, Tesař V (2019) Matrix metalloproteinases in renal diseases: a critical appraisal. Kidney Blood Press Res 44(3):298–330. https://doi.org/10.1159/000499876

    Article  CAS  PubMed  Google Scholar 

  20. Kheirouri S, Alizadeh M, Maleki V (2018) Zinc against advanced glycation end products. Clin Exp Pharmacol Physiol 45(6):491–498. https://doi.org/10.1111/1440-1681.12904

    Article  CAS  PubMed  Google Scholar 

  21. Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M et al (2022) Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 9:1002710. https://doi.org/10.3389/fmolb.2022.1002710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stinghen AE, Massy ZA, Vlassara H, Striker GE, Boullier A (2016) Uremic toxicity of advanced glycation end products in CKD. J Am Soc Nephrol 27(2):354–370. https://doi.org/10.1681/asn.2014101047

    Article  CAS  PubMed  Google Scholar 

  23. Bohlender JM, Franke S, Stein G, Wolf G (2005) Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 289(4):F645-659. https://doi.org/10.1152/ajprenal.00398.2004

    Article  CAS  PubMed  Google Scholar 

  24. Butt N, Bano F, Ghani M, Ahmed AM, Majeed N (2021) Association of serum advanced glycation (AGEs) end products, apolipoprotein-B and zinc in severity of T2DM retinopathy. Pak J Pharm Sci 34(2(Supplementary)):803–808

    CAS  PubMed  Google Scholar 

  25. Grădinaru D, Margină D, Ungurianu A, Nițulescu G, Pena CM, Ionescu-Tîrgoviște C et al (2021) Zinc status, insulin resistance and glycoxidative stress in elderly subjects with type 2 diabetes mellitus. Exp Ther Med 22(6):1393. https://doi.org/10.3892/etm.2021.10829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burnier M, Lin S, Ruilope L, Bader G, Durg S, Brunel P (2019) Effect of angiotensin receptor blockers on blood pressure and renal function in patients with concomitant hypertension and chronic kidney disease: a systematic review and meta-analysis. Blood Press 28(6):358–374. https://doi.org/10.1080/08037051.2019.1644155

    Article  CAS  PubMed  Google Scholar 

  27. Mousavi SM, Mofrad MD, do Nascimento IJB, Milajerdi A, Mokhtari T, Esmaillzadeh A (2020) The effect of zinc supplementation on blood pressure: a systematic review and dose-response meta-analysis of randomized-controlled trials. Eur J Nutr 59(5):1815–1827. https://doi.org/10.1007/s00394-020-02204-5

    Article  CAS  PubMed  Google Scholar 

  28. Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 88(22):10045–10048. https://doi.org/10.1073/pnas.88.22.10045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Darroudi S, Saberi-Karimian M, Tayefi M, Tayefi B, Khashyarmanesh Z, Fereydouni N et al (2019) Association between hypertension in healthy participants and zinc and copper status: a population-based study. Biol Trace Elem Res 190(1):38–44. https://doi.org/10.1007/s12011-018-1518-4

    Article  CAS  PubMed  Google Scholar 

  30. Vivoli G, Bergomi M, Rovesti S, Pinotti M, Caselgrandi E (1995) Zinc, copper, and zinc- or copper-dependent enzymes in human hypertension. Biol Trace Elem Res 49(2–3):97–106. https://doi.org/10.1007/bf02788959

    Article  CAS  PubMed  Google Scholar 

  31. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137(11):2405–2411. https://doi.org/10.1093/jn/137.11.2405

    Article  CAS  PubMed  Google Scholar 

  32. Makino T, Saito M, Horiguchi D, Kina K (1982) A highly sensitive colorimetric determination of serum zinc using water-soluble pyridylazo dye. Clin Chim Acta 120(1):127–135. https://doi.org/10.1016/0009-8981(82)90083-3

    Article  CAS  PubMed  Google Scholar 

  33. Matsushita K, Selvin E, Bash LD, Astor BC, Coresh J (2010) Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) study. Am J Kidney Dis 55(4):648–659. https://doi.org/10.1053/j.ajkd.2009.12.016

    Article  PubMed  PubMed Central  Google Scholar 

  34. Institute of Medicine Panel on M. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academies Press (US) Copyright 2001 by the National Academy of Sciences. All rights reserved.; 2001

  35. Hadley KB, Newman SM, Hunt JR (2010) Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem 21(4):297–303. https://doi.org/10.1016/j.jnutbio.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  36. Sivalingam N, Pichandi S, Chapla A, Dinakaran A, Jacob M (2011) Zinc protects against indomethacin-induced damage in the rat small intestine. Eur J Pharmacol 654(1):106–116. https://doi.org/10.1016/j.ejphar.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  37. Xu C, Huang Z, Liu L, Luo C, Lu G, Li Q et al (2015) Zinc regulates lipid metabolism and MMPs expression in lipid disturbance rabbits. Biol Trace Elem Res 168(2):411–420. https://doi.org/10.1007/s12011-015-0367-7

    Article  CAS  PubMed  Google Scholar 

  38. Laronha H, Caldeira J (2020) Structure and function of human matrix metalloproteinases. Cells 9(5). https://doi.org/10.3390/cells9051076

  39. Martins LM, Barros IS, Ferreira ES, Silva Neto AGD, Dourado C, Oliveira VA et al (2021) Expression of metalloproteinases 2 and 9 and plasma zinc concentrations in women with fibroadenoma. Rev Assoc Med Bras 67(6):806–810. https://doi.org/10.1590/1806-9282.20201015

    Article  PubMed  Google Scholar 

  40. Valentin F, Bueb JL, Kieffer P, Tschirhart E, Atkinson J (2005) Oxidative stress activates MMP-2 in cultured human coronary smooth muscle cells. Fundam Clin Pharmacol 19(6):661–667. https://doi.org/10.1111/j.1472-8206.2005.00371.x

    Article  CAS  PubMed  Google Scholar 

  41. Pulido-Olmo H, García-Prieto CF, Álvarez-Llamas G, Barderas MG, Vivanco F, Aranguez I et al (2016) Role of matrix metalloproteinase-9 in chronic kidney disease: a new biomarker of resistant albuminuria. Clin Sci (Lond) 130(7):525–538. https://doi.org/10.1042/cs20150517

    Article  CAS  PubMed  Google Scholar 

  42. Yang F, Li B, Dong X, Cui W, Luo P (2017) The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus. J Trace Elem Med Biol 42:1–10. https://doi.org/10.1016/j.jtemb.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  43. Choi S, Liu X, Pan Z (2018) Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 39(7):1120–1132. https://doi.org/10.1038/aps.2018.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miao X, Wang Y, Sun J, Sun W, Tan Y, Cai L et al (2013) Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovasc Diabetol 12:54. https://doi.org/10.1186/1475-2840-12-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ceylan MN, Akdas S, Yazihan N (2021) The effects of zinc supplementation on C-reactive protein and inflammatory cytokines: a meta-analysis and systematical review. J Interferon Cytokine Res 41(3):81–101. https://doi.org/10.1089/jir.2020.0209

    Article  CAS  PubMed  Google Scholar 

  46. Yan YW, Fan J, Bai SL, Hou WJ, Li X, Tong H (2016) Zinc prevents abdominal aortic aneurysm formation by induction of A20-mediated suppression of NF-κB pathway. PLoS One 11(2):e0148536. https://doi.org/10.1371/journal.pone.0148536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Underwood CK, Min D, Lyons JG, Hambley TW (2003) The interaction of metal ions and Marimastat with matrix metalloproteinase 9. J Inorg Biochem 95(2–3):165–170. https://doi.org/10.1016/s0162-0134(03)00100-4

    Article  CAS  PubMed  Google Scholar 

  48. Kuzan A (2021) Toxicity of advanced glycation end products (review). Biomed Rep 14(5):46. https://doi.org/10.3892/br.2021.1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dozio E, Vettoretti S, Caldiroli L, Nerini-Molteni S, Tacchini L, Ambrogi F, et al (2020) Advanced glycation end products (AGE) and soluble forms of AGE receptor: emerging role as mortality risk factors in CKD. Biomedicines 8(12). https://doi.org/10.3390/biomedicines8120638

  50. Pavone B, Sirolli V, Giardinelli A, Bucci S, Forlì F, Di Cesare M et al (2011) Plasma protein carbonylation in chronic uremia. J Nephrol 24(4):453–464. https://doi.org/10.5301/jn.2011.8342

    Article  CAS  PubMed  Google Scholar 

  51. Busch M, Franke S, Rüster C, Wolf G (2010) Advanced glycation end-products and the kidney. Eur J Clin Invest 40(8):742–755. https://doi.org/10.1111/j.1365-2362.2010.02317.x

    Article  CAS  PubMed  Google Scholar 

  52. Brazão V, Filipin Mdel V, Santello FH, Azevedo AP, Toldo MP, de Morais FR et al (2015) Immunomodulatory properties and anti-apoptotic effects of zinc and melatonin in an experimental model of chronic Chagas disease. Immunobiology 220(5):626–633. https://doi.org/10.1016/j.imbio.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  53. Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR (2017) Zinc and oxidative stress: current mechanisms. antioxidants (Basel) 6(2). https://doi.org/10.3390/antiox6020024

  54. Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR (2017) NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol 312(1):C47-c55. https://doi.org/10.1152/ajpcell.00208.2016

    Article  PubMed  Google Scholar 

  55. Tarwadi KV, Agte VV (2011) Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albumin. Biol Trace Elem Res 143(2):717–725. https://doi.org/10.1007/s12011-010-8915-7

    Article  CAS  PubMed  Google Scholar 

  56. Tupe R, Kulkarni A, Adeshara K, Sankhe N, Shaikh S, Dalal S et al (2015) Zinc inhibits glycation induced structural, functional modifications in albumin and protects erythrocytes from glycated albumin toxicity. Int J Biol Macromol 79:601–610. https://doi.org/10.1016/j.ijbiomac.2015.05.028

    Article  CAS  PubMed  Google Scholar 

  57. Kerkadi A, Alkudsi DS, Hamad S, Alkeldi HM, Salih R, Agouni A (2021) The association between zinc and copper circulating levels and cardiometabolic risk factors in adults: a study of Qatar Biobank Data. Nutrients 13(8). https://doi.org/10.3390/nu13082729

  58. Batista MN, Cuppari L, de Fátima Campos Pedrosa L, Almeida M, de Almeida JB, de Medeiros AC et al (2006) Effect of end-stage renal disease and diabetes on zinc and copper status. Biol Trace Elem Res 112(1):1–12. https://doi.org/10.1385/bter:112:1:1

    Article  CAS  PubMed  Google Scholar 

  59. Shih C-T, Shiu Y-L, Chen C-A, Lin H-Y, Huang Y-L, Lin C-C (2012) Changes in levels of copper, iron, zinc, and selenium in patients at different stages of chronic kidney disease. Genom Med Biomark Health Sci 4(4):128–130. https://doi.org/10.1016/j.gmbhs.2013.03.001

    Article  Google Scholar 

  60. Ghasemi A, Zahediasl S, Hosseini-Esfahani F, Azizi F (2012) Reference values for serum zinc concentration and prevalence of zinc deficiency in adult Iranian subjects. Biol Trace Elem Res 149(3):307–314. https://doi.org/10.1007/s12011-012-9445-2

    Article  CAS  PubMed  Google Scholar 

  61. Tesfaye WH, Erku D, Mekonnen A, Tefera YG, Castelino R, Sud K et al (2021) Medication non-adherence in chronic kidney disease: a mixed-methods review and synthesis using the theoretical domains framework and the behavioural change wheel. J Nephrol 34(4):1091–1125. https://doi.org/10.1007/s40620-020-00895-x

    Article  PubMed  Google Scholar 

  62. Moran VH, Stammers AL, Medina MW, Patel S, Dykes F, Souverein OW et al (2012) The relationship between zinc intake and serum/plasma zinc concentration in children: a systematic review and dose-response meta-analysis. Nutrients 4(8):841–858. https://doi.org/10.3390/nu4080841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Vice-Chancellor for Research and Technology of Kashan University of Medical Sciences and the Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. Also, this work was a part of the M.Sc. thesis of Abbas Mohtashamian, the student of Kashan University of Medical Sciences.

Funding

This work was supported by the Vice-Chancellor for Research and Technology of Kashan University of Medical Sciences, Kashan, Iran (grant number: 400054).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Nasrin Sharifi, Abbas Mohtashamian, Alireza Soleimani, Hamid Reza Gilasi, Seyed Masoud Moeini Taba, and Nejat Kheiripour. The first draft of the manuscript was written by Abbas Mohtashamian and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nasrin Sharifi.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Kashan University of Medical Sciences, Kashan, Iran (IR.KAUMS.MEDNT.REC.1400.065).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtashamian, A., Soleimani, A., Gilasi, H.R. et al. Association of Zinc Status with Matrix Metalloproteinases, Advanced Glycation End-Products, and Blood Pressure in Patients with Chronic Kidney Disease. Biol Trace Elem Res 201, 4275–4285 (2023). https://doi.org/10.1007/s12011-022-03524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03524-9

Keywords

Navigation