Skip to main content

Advertisement

Log in

Ferroptosis As a Mechanism for Health Effects of Essential Trace Elements and Potentially Toxic Trace Elements

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ferroptosis is a unique form of programmed cell death driven by iron-dependent phospholipid peroxidation that was proposed in recent years. It plays an important role in processes of various trace element-related diseases and is regulated by redox homeostasis and various cellular metabolic pathways (iron, amino acids, lipids, sugars), as well as disease-related signaling pathways. Some limited pioneering studies have demonstrated ferroptosis as a mechanism for the health effects of essential trace elements and potentially toxic trace elements, with crosstalk among them. The aim of this review is to bring together research articles and identify key direct and indirect evidence regarding essential trace elements (iron, selenium, zinc, copper, chromium, manganese) and potentially toxic trace elements (arsenic, aluminum, mercury) and their possible roles in ferroptosis. Our review may help determine future research priorities and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Fraga CG, Oteiza PI, Keen CL. Trace elements and human health. Mol Aspects Med. 2005 Aug-Oct;26(4–5):233–4. PMID: 16122783. https://doi.org/10.1016/j.mam.2005.07.014

  2. World Health Organization, International Atomic Energy Agency, Nations FaAOotU. Trace elements in human nutrition and health. Geneva: World Health Organization; 1996.

  3. Cannas D, Loi E, Serra M, Firinu D, Valera P, Zavattari P (2020) Relevance of essential trace elements in nutrition and drinking water for human health and autoimmune disease risk. Nutrients. 12(7). https://doi.org/10.3390/nu12072074

  4. Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J, Kaminski J et al (2021) Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184(16):4168–85 e21. https://doi.org/10.1016/j.cell.2021.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26(3):165–76. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  6. Bayir H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM et al (2020) Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem Biol 27(4):387–408. https://doi.org/10.1016/j.chembiol.2020.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dev S, Babitt JL (2017) Overview of iron metabolism in health and disease. Hemodial Int 21(1):S6–S20. https://doi.org/10.1111/hdi.12542

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–97. https://doi.org/10.1016/s0092-8674(04)00343-5

    Article  CAS  PubMed  Google Scholar 

  9. Krzywoszynska K, Witkowska D, Swiatek-Kozlowska J, Szebesczyk A, Kozlowski H (2020) General aspects of metal ions as signaling agents in health and disease. Biomolecules 10(10):1417. https://doi.org/10.3390/biom10101417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicol 283(2–3):65–87. https://doi.org/10.1016/j.tox.2011.03.001

    Article  CAS  Google Scholar 

  11. Wolonciej M, Milewska E, Roszkowska-Jakimiec W (2016) Trace elements as an activator of antioxidant enzymes. Postepy Hig Med Dosw (Online) 70:1483–98. https://doi.org/10.5604/17322693.1229074

    Article  PubMed  Google Scholar 

  12. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 15(5):348–66. https://doi.org/10.1038/nrd.2015.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–64. https://doi.org/10.1038/s41422-019-0164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361(16):1570–83. https://doi.org/10.1056/NEJMra0901217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–96. https://doi.org/10.1016/s1535-6108(03)00050-3

    Article  CAS  PubMed  Google Scholar 

  17. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):864–8. https://doi.org/10.1038/nature05859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–45. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

  20. Chen X, Comish PB, Tang D, Kang R (2021) Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol 9:637162. https://doi.org/10.3389/fcell.2021.637162

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang H, Liu C, Zhao Y, Gao G (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol. 99(1):151058. https://doi.org/10.1016/j.ejcb.2019.151058

    Article  CAS  PubMed  Google Scholar 

  22. Miyake S, Murai S, Kakuta S, Uchiyama Y, Nakano H (2020) Identification of the hallmarks of necroptosis and ferroptosis by transmission electron microscopy. Biochem Biophys Res Commun. 527(3):839–44. https://doi.org/10.1016/j.bbrc.2020.04.127

    Article  CAS  PubMed  Google Scholar 

  23. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–82. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503(3):1550–6. https://doi.org/10.1016/j.bbrc.2018.07.078

    Article  CAS  PubMed  Google Scholar 

  25. Dixon SJ, Stockwell BR (2019) The hallmarks of ferroptosis. Annu Rev Cancer Biol 3(1):35–54. https://doi.org/10.1146/annurev-cancerbio-030518-055844

    Article  Google Scholar 

  26. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26(9):1021–1032. https://doi.org/10.1038/cr.2016.95

  27. Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

  28. Kazan K, Kalaipandian S (2019) Ferroptosis: yet another way to die. Trends Plant Sci 24(6):479–81. https://doi.org/10.1016/j.tplants.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  29. Green DR (2019) The coming decade of cell death research: five riddles. Cell 177(5):1094–107. https://doi.org/10.1016/j.cell.2019.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan H, Pratte J, Giardina C (2021) Ferroptosis and its potential as a therapeutic target. Biochem Pharmacol 186:114486. https://doi.org/10.1016/j.bcp.2021.114486

    Article  CAS  PubMed  Google Scholar 

  31. Tang D, Kroemer G (2020) Ferroptosis. Curr Biol 30(21):R1292–R7. https://doi.org/10.1016/j.cub.2020.09.068

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N et al (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88. https://doi.org/10.1038/s41419-020-2298-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dixon SJ (2017) Ferroptosis: bug or feature? Immunol Rev 277(1):150–7. https://doi.org/10.1111/imr.12533

    Article  CAS  PubMed  Google Scholar 

  34. Sharma A, Flora SJS (2021) Positive and negative regulation of ferroptosis and its role in maintaining metabolic and redox homeostasis. Oxidative Med Cell Longev 2021:9074206. https://doi.org/10.1155/2021/9074206

    Article  CAS  Google Scholar 

  35. Hao S, Liang B, Huang Q, Dong S, Wu Z, He W et al (2018) Metabolic networks in ferroptosis. Oncol Lett 15(4):5405–11. https://doi.org/10.3892/ol.2018.8066

    Article  CAS  PubMed  Google Scholar 

  36. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA et al (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1):49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–79. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang M, Chen Z, Wu D, Chen L (2018) Ferritinophagy/ferroptosis: iron-related newcomers in human diseases. J Cell Physiol 233(12):9179–90. https://doi.org/10.1002/jcp.26954

    Article  CAS  PubMed  Google Scholar 

  39. Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj 1861(8):1893–900. https://doi.org/10.1016/j.bbagen.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  40. Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9–17. https://doi.org/10.1038/nchembio.1416

    Article  CAS  PubMed  Google Scholar 

  41. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308. https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daher B, Vucetic M, Pouyssegur J (2020) Cysteine depletion, a key action to challenge cancer cells to ferroptotic cell death. Front Oncol 10:723. https://doi.org/10.3389/fonc.2020.00723

    Article  PubMed  PubMed Central  Google Scholar 

  43. Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T (2017) Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 403:143–70. https://doi.org/10.1007/82_2016_508

    Article  CAS  PubMed  Google Scholar 

  44. Alborzinia H, Ignashkova TI, Dejure FR, Gendarme M, Theobald J, Wolfl S et al (2018) Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol 1:210. https://doi.org/10.1038/s42003-018-0212-6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shojaie L, Iorga A, Dara L (2020) Cell death in liver diseases: a review. Int J Mol Sci 21(24). https://doi.org/10.3390/ijms21249682

  46. Wu J, Wang Y, Jiang R, Xue R, Yin X, Wu M et al (2021) Ferroptosis in liver disease: new insights into disease mechanisms. Cell Death Discov 7(1):276. https://doi.org/10.1038/s41420-021-00660-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu CY, Wang M, Yu HM, Han FX, Wu QS, Cai XJ et al (2020) Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci Biotechnol Biochem 84(8):1621–8. https://doi.org/10.1080/09168451.2020.1763155

    Article  CAS  PubMed  Google Scholar 

  48. Yamada N, Karasawa T, Kimura H, Watanabe S, Komada T, Kamata R et al (2020) Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Dis 11(2):144. https://doi.org/10.1038/s41419-020-2334-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan H, Li X, Zhang X, Kang R, Tang D (2016) CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 478(2):838–44. https://doi.org/10.1016/j.bbrc.2016.08.034

    Article  CAS  PubMed  Google Scholar 

  50. Gao G, Xie Z, Li EW, Yuan Y, Fu Y, Wang P et al (2021) Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J Nat Med 75(3):540–52. https://doi.org/10.1007/s11418-021-01491-4

    Article  CAS  PubMed  Google Scholar 

  51. Fang X, Wang H, Han D, Xie E, Yang X, Wei J et al (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A 116(7):2672–80. https://doi.org/10.1073/pnas.1821022116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahoney-Sanchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC (2021) Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Prog Neurobiol 196:101890. https://doi.org/10.1016/j.pneurobio.2020.101890

    Article  CAS  PubMed  Google Scholar 

  53. Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H et al (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–36. https://doi.org/10.1016/j.canlet.2020.02.015

    Article  CAS  PubMed  Google Scholar 

  54. Polo-Romero FJ (2006) Intramuscular deferoxamine in hereditary hemochromatosis. Am J Hematol 81(3):225–6. https://doi.org/10.1002/ajh.20450

    Article  PubMed  Google Scholar 

  55. Rustin P, Munnich A, Rotig A (1999) Quinone analogs prevent enzymes targeted in Friedreich ataxia from iron-induced injury in vitro. Biofactors 9(2–4):247–51. https://doi.org/10.1002/biof.5520090220

    Article  CAS  PubMed  Google Scholar 

  56. Calvaruso G, Vitrano A, Di Maggio R, Lai E, Colletta G, Quota A et al (2015) Deferiprone versus deferoxamine in thalassemia intermedia: results from a 5-year long-term Italian multicenter randomized clinical trial. Am J Hematol 90(7):634–8. https://doi.org/10.1002/ajh.24024

    Article  CAS  PubMed  Google Scholar 

  57. Xue Y, Zhang G, Zhou S, Wang S, Lv H, Zhou L, et al (2021) Iron chelator induces apoptosis in osteosarcoma cells by disrupting intracellular iron homeostasis and activating the MAPK pathway. Int J Mol Sci 22(13.) https://doi.org/10.3390/ijms22137168

  58. Saha P, Yeoh BS, Xiao X, Golonka RM, Kumarasamy S, Vijay-Kumar M (2019) Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation. Biochem Pharmacol 168:71–81. https://doi.org/10.1016/j.bcp.2019.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu Y, Gutierrez E, Kovacevic Z, Saletta F, Obeidy P, SuryoRahmanto Y et al (2012) Iron chelators for the treatment of cancer. Curr Med Chem 19(17):2689–702. https://doi.org/10.2174/092986712800609706

    Article  CAS  PubMed  Google Scholar 

  60. Hassannia B, Vandenabeele P, VandenBerghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–49. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  61. Liang C, Zhang X, Yang M, Dong X (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31(51):e1904197. https://doi.org/10.1002/adma.201904197

    Article  CAS  PubMed  Google Scholar 

  62. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):34. https://doi.org/10.1186/s13045-019-0720-y

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lieber CS, DeCarli LM (1968) Ethanol oxidation by hepatic microsomes: adaptive increase after ethanol feeding. Sci 162(3856):917–8. https://doi.org/10.1126/science.162.3856.917

    Article  CAS  Google Scholar 

  64. Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S (2020) Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 8(3). https://doi.org/10.3390/biomedicines8030050

  65. Cederbaum AI (1989) Oxygen radical generation by microsomes: role of iron and implications for alcohol metabolism and toxicity. Free Radical Biol Med 7(5):559–67. https://doi.org/10.1016/0891-5849(89)90033-6

    Article  CAS  Google Scholar 

  66. Bacon BR, Healey JF, Brittenham GM, Park CH, Nunnari J, Tavill AS et al (1989) Hepatic microsomal function in rats with chronic dietary iron overload. Gastroenterol 90(6):1844–53. https://doi.org/10.1016/0016-5085(86)90251-9

    Article  Google Scholar 

  67. Imam MU, Zhang S, Ma J, Wang H, Wang F (2017) Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients 9(7). https://doi.org/10.3390/nu9070671

  68. Rana S, Prabhakar N (2021) Iron disorders and hepcidin. Clin Chim Acta 523:454–68. https://doi.org/10.1016/j.cca.2021.10.032

    Article  CAS  PubMed  Google Scholar 

  69. Kajarabille N, Latunde-Dada GO (2019) Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci 20(19). https://doi.org/10.3390/ijms20194968

  70. Shi H, Almutairi M, Moskovitz J, Xu YG (2021) Recent advances in iron homeostasis and regulation—a focus on epigenetic regulation and stroke. Free Radic Res 55(4):375–83. https://doi.org/10.1080/10715762.2020.1867314

    Article  CAS  PubMed  Google Scholar 

  71. Zeidan RS, Han SM, Leeuwenburgh C, Xiao R (2021) Iron homeostasis and organismal aging. Ageing Res Rev 72:101510. https://doi.org/10.1016/j.arr.2021.101510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Drakesmith H, Prentice AM (2012) Hepcidin and the iron-infection axis. Science 338(6108):768–72. https://doi.org/10.1126/science.1224577

    Article  CAS  PubMed  Google Scholar 

  73. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC (1999) Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 21(4):396–9. https://doi.org/10.1038/7727

    Article  CAS  PubMed  Google Scholar 

  74. Puntarulo S (2005) Iron, oxidative stress and human health. Mol Aspects Med 26(4–5):299–312. https://doi.org/10.1016/j.mam.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  75. Koleini N, Shapiro JS, Geier J, Ardehali H (2021) Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest 131(11) https://doi.org/10.1172/JCI148671

  76. Fu W, Yi J, Cheng M, Liu Y, Zhang G, Li L et al (2022) When bimetallic oxides and their complexes meet Fenton-like process. J Hazard Mater 424(Pt B):127419. https://doi.org/10.1016/j.jhazmat.2021.127419

    Article  CAS  PubMed  Google Scholar 

  77. Brown JB, Lee MA, Smith AT (2021) Ins and outs: recent advancements in membrane protein-mediated prokaryotic ferrous iron transport. Biochem 60(44):3277–91. https://doi.org/10.1021/acs.biochem.1c00586

    Article  CAS  Google Scholar 

  78. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–25. https://doi.org/10.1038/s41422-020-00441-1

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Fan BY, Pang YL, Shen WY, Wang X, Zhao CX et al (2020) Neuroprotective effect of deferoxamine on erastininduced ferroptosis in primary cortical neurons. Neural Regen Res 15(8):1539–45. https://doi.org/10.4103/1673-5374.274344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peng Y, Chang X, Lang M (2021) Iron homeostasis disorder and Alzheimer's disease. Int J Mol Sci 22(22). https://doi.org/10.3390/ijms222212442

  81. Leng Y, Luo X, Yu J, Jia H, Yu B (2021) Ferroptosis: a potential target in cardiovascular disease. Front Cell Dev Biol 9:813668. https://doi.org/10.3389/fcell.2021.813668

    Article  PubMed  Google Scholar 

  82. Chen S, Chen Y, Zhang Y, Kuang X, Liu Y, Guo M et al (2020) Iron metabolism and ferroptosis in epilepsy. Front Neurosci 14:601193. https://doi.org/10.3389/fnins.2020.601193

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stockwell BR, Jiang X, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30(6):478–90. https://doi.org/10.1016/j.tcb.2020.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen J, Li X, Ge C, Min J, Wang F (2022) The multifaceted role of ferroptosis in liver disease. Cell Death Differ 29(3):467–80. https://doi.org/10.1038/s41418-022-00941-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P et al (2020) Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 136(6):726–39. https://doi.org/10.1182/blood.2019002907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu A, Feng B, Yu J, Yan L, Che L, Zhuo Y et al (2021) Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol 46:102131. https://doi.org/10.1016/j.redox.2021.102131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P et al (2020) Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 127(4):486–501. https://doi.org/10.1161/CIRCRESAHA.120.316509

    Article  CAS  PubMed  Google Scholar 

  88. Conrad M, Proneth B (2019) Broken hearts: iron overload, ferroptosis and cardiomyopathy. Cell Res 29(4):263–4. https://doi.org/10.1038/s41422-019-0150-y

    Article  PubMed  PubMed Central  Google Scholar 

  89. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–817. https://doi.org/10.1152/physrev.00022.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang Y, Xin L, Xiang M, Shang C, Wang Y, Wang Y et al (2022) The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother 145:112423. https://doi.org/10.1016/j.biopha.2021.112423

    Article  CAS  PubMed  Google Scholar 

  91. Wu X, Li Y, Zhang S, Zhou X (2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11(7):3052–9. https://doi.org/10.7150/thno.54113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bai Q, Liu J, Wang G (2020) Ferroptosis, a regulated neuronal cell death type after intracerebral hemorrhage. Front Cell Neurosci 14:591874. https://doi.org/10.3389/fncel.2020.591874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gleason A, Bush AI (2021) Iron and ferroptosis as therapeutic targets in Alzheimer’s disease. Neurotherapeutics 18(1):252–64. https://doi.org/10.1007/s13311-020-00954-y

    Article  PubMed  Google Scholar 

  94. Rayman MP (2012) Selenium and human health. The Lancet 379(9822):1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

  95. Hatfield DL, Berry MJ, Gladyshev VN (2011) Selenium: its molecular biology and role in human health: Springer Science & Business Media ISBN: 1461410258.

  96. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14(7):1337–83. https://doi.org/10.1089/ars.2010.3275

    Article  CAS  PubMed  Google Scholar 

  97. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806. https://doi.org/10.1089/ars.2007.1528

    Article  CAS  PubMed  Google Scholar 

  98. Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med. 13(2):102–8. https://doi.org/10.1007/s12199-007-0019-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zoidis E, Seremelis I, Kontopoulos N, Danezis GP (2018) Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel) 7(5) https://doi.org/10.3390/antiox7050066

  100. Tsuji PA, Santesmasses D, Lee BJ, Gladyshev VN, Hatfield DL (2021) Historical roles of selenium and selenoproteins in health and development: the good, the bad and the ugly. Int J Mol Sci. 23(1) https://doi.org/10.3390/ijms23010005

  101. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–41. https://doi.org/10.1016/S0140-6736(00)02490-9

    Article  CAS  PubMed  Google Scholar 

  102. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54. https://doi.org/10.1039/c3mt00185g

    Article  CAS  PubMed  Google Scholar 

  103. Santesmasses D, Gladyshev VN (2021) Pathogenic variants in selenoproteins and selenocysteine biosynthesis machinery. Int J Mol Sci 22(21) https://doi.org/10.3390/ijms222111593

  104. Bulteau AL, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23(10):775–94. https://doi.org/10.1089/ars.2015.6391

    Article  CAS  PubMed  Google Scholar 

  105. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–77. https://doi.org/10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown KM, Selenium Arthur JR. (2001) selenoproteins and human health: a review. Public Health Nutr 4(2B):593–9. https://doi.org/10.1079/phn2001143

    Article  CAS  PubMed  Google Scholar 

  107. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochimica et Biophysica Acta (BBA)-General Subjects 1830(5):3289–303. https://doi.org/10.1016/j.bbagen.2012.11.020

  108. Gromer S, Eubel J, Lee B, Jacob J (2005) Human selenoproteins at a glance. Cell Mol Life Sci CMLS 62(21):2414–2437. https://doi.org/10.1007/s00018-005-5143-y

  109. Lennarz WJ, Lane MD (2013) Encyclopedia of biological chemistry: Academic Press

  110. Bridges RJ, Natale NR, Patel SA (2012) System xc-cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165(1):20–34. https://doi.org/10.1111/j.1476-5381.2011.01480.x

  111. Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G et al (2019) Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. BioFactors 45(2):152–168. https://doi.org/10.1002/biof.1476

  112. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262–79 e25. https://doi.org/10.1016/j.cell.2019.03.032

    Article  CAS  PubMed  Google Scholar 

  113. Li C, Deng X, Zhang W, Xie X, Conrad M, Liu Y et al (2019) Novel allosteric activators for ferroptosis regulator glutathione peroxidase 4. J Med Chem 62(1):266–75. https://doi.org/10.1021/acs.jmedchem.8b00315

    Article  CAS  PubMed  Google Scholar 

  114. Li P, Jiang M, Li K, Li H, Zhou Y, Xiao X et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22(9):1107–17. https://doi.org/10.1038/s41590-021-00993-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thayyullathil F, Cheratta AR, Alakkal A, Subburayan K, Pallichankandy S, Hannun YA et al (2021) Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis 12(1):26. https://doi.org/10.1038/s41419-020-03297-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Park TJ, Park JH, Lee GS, Lee JY, Shin JH, Kim MW et al (2019) Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis 10(11):835. https://doi.org/10.1038/s41419-019-2061-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 133:144–52. https://doi.org/10.1016/j.freeradbiomed.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  118. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73(11–12):2195–209. https://doi.org/10.1007/s00018-016-2194-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Poltorack CD, Dixon SJ (2022) Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS J 289(2):374–85. https://doi.org/10.1111/febs.15842

    Article  CAS  PubMed  Google Scholar 

  120. Kim SJ, Choi MC, Park JM, Chung AS (2021) Antitumor effects of selenium. Int J Mol Sci 22(21):11844. https://doi.org/10.3390/ijms222111844

  121. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K et al (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409–22 e21. https://doi.org/10.1016/j.cell.2017.11.048

  122. Cardoso BR, Hare DJ, Bush AI, Roberts BR (2017) Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry 22(3):328–35. https://doi.org/10.1038/mp.2016.196

    Article  CAS  PubMed  Google Scholar 

  123. Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X et al (2020) Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med 160:552–65. https://doi.org/10.1016/j.freeradbiomed.2020.08.029

    Article  CAS  PubMed  Google Scholar 

  124. Cunha TA, Vermeulen-Serpa KM, Grilo EC, Leite-Lais L, Brandão-Neto J, Vale SH (2022) Association between zinc and body composition: an integrative review. J Trace Elem Med Biol 71:126940. https://doi.org/10.1016/j.jtemb.2022.12694

  125. Scavo S, Oliveri V (2021) Zinc ionophores: chemistry and biological applications.  J Inorg Biochem 228:111691. https://doi.org/10.1016/j.jinorgbio.2021.111691

  126. Ge MH, Tian H, Mao L, Li DY, Lin JQ, Hu HS, et al (2021) Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther https://doi.org/10.1111/cns.13657

  127. Ho E, Wong CP, King JC (2022) Impact of zinc on DNA integrity and age-related inflammation. Free Radic Biol Med 178:391–7. https://doi.org/10.1016/j.freeradbiomed.2021.12.256

    Article  CAS  PubMed  Google Scholar 

  128. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–65. https://doi.org/10.3390/ijerph7041342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Planeta Kepp K (2021) Bioinorganic chemistry of zinc in relation to the Immune system. Chem Bio Chem 23(9):e202100554. https://doi.org/10.1002/cbic.202100554

  130. Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J et al (2022) Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomarker Res 10(1):1–13. https://doi.org/10.1186/s40364-021-00345-1

  131. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144

  132. Wandzilak A, Czyzycki M, Wrobel P, Szczerbowska-Boruchowska M, Radwanska E, Adamek D et al (2013) The oxidation states and chemical environments of iron and zinc as potential indicators of brain tumour malignancy grade–preliminary results. Metallomics 5(11):1547–1553. https://doi.org/10.1039/c3mt00158j

  133. Baarz BR, Rink L (2021) Rebalancing the unbalanced aged immune system-a special focus on zinc. Ageing Res Rev 74:101541. https://doi.org/10.1016/j.arr.2021.101541

  134. Prasad AS (2014) Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr 1:14. https://doi.org/10.3389/fnut.2014.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534. https://doi.org/10.1007/s00204-011-0775-1

    Article  CAS  PubMed  Google Scholar 

  136. Marreiro DDN, Cruz KJC, Morais JBS, Beserra JB, Severo JS, De Oliveira ARS (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6(2):24. https://doi.org/10.3390/antiox6020024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ge Mh, Tian H, Mao L, Dy Li, Lin Jq, Hu Hs et al (2021) Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther 27(9):1023–40. https://doi.org/10.1111/cns.13657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper. Biomed Pharmacother 57(9):386–98. https://doi.org/10.1016/s0753-3322(03)00012-x

    Article  CAS  PubMed  Google Scholar 

  139. da Silva DA, De Luca A, Squitti R, Rongioletti M, Rossi L, Machado CML et al (2022) Copper in tumors and the use of copper-based compounds in cancer treatment. J Inorg Biochem 226:111634. https://doi.org/10.1016/j.jinorgbio.2021.111634

    Article  CAS  PubMed  Google Scholar 

  140. Angelova M, Asenova S, Nedkova V, Koleva-Kolarova R (2011). Copper in the human organism. Trakia Trakia J Sci 9(1):88–98

  141. Vetlényi E, Rácz G (2020) The physiological function of copper, the etiological role of copper excess and deficiency. Orv Hetil 161(35):1488–1496. https://doi.org/10.1556/650.2020.31854

  142. Healy J, Tipton K (2007) Ceruloplasmin and what it might do. J Neural Transm (Vienna). 114(6):777–81. https://doi.org/10.1007/s00702-007-0687-7

    Article  CAS  PubMed  Google Scholar 

  143. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr. 22:439–58. https://doi.org/10.1146/annurev.nutr.22.012502.114457

    Article  CAS  PubMed  Google Scholar 

  144. Frieden E, Hsieh HS (1976) Ceruloplasmin: the copper transport protein with essential oxidase activity. Adv Enzymol Relat Areas Mol Biol 44:187–236. https://doi.org/10.1002/9780470122891.ch6

    Article  CAS  PubMed  Google Scholar 

  145. Lutsenko S (2021) Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci 134(21):240523. https://doi.org/10.1242/jcs.240523

    Article  CAS  Google Scholar 

  146. Rydén L (2018) Ceruloplasmin. CRC Press, Copper proteins and copper enzymes, pp 37–100

    Google Scholar 

  147. Pak K, Ordway S, Sadowski B, Canevari M, Torres D (2021) Wilson’s disease and iron overload: pathophysiology and therapeutic implications. Clin Liver Dis (Hoboken) 17(2):61–6. https://doi.org/10.1002/cld.986

    Article  PubMed  Google Scholar 

  148. Shang Y, Luo M, Yao F, Wang S, Yuan Z, Yang Y (2020) Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal 72:109633. https://doi.org/10.1016/j.cellsig.2020.109633

    Article  CAS  PubMed  Google Scholar 

  149. Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M et al (2020) Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem 295(19):6312–29. https://doi.org/10.1074/jbc.REV119.009453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J (2017) Influence of iron metabolism on manganese transport and toxicity. Metallomics 9(8):1028–46. https://doi.org/10.1039/c7mt00079k

    Article  CAS  PubMed  Google Scholar 

  151. Bjorklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA et al (2017) Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol 41:41–53. https://doi.org/10.1016/j.jtemb.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  152. Kwik-Uribe C, Smith DR (2006) Temporal responses in the disruption of iron regulation by manganese. J Neurosci Res 83(8):1601–10. https://doi.org/10.1002/jnr.20836

    Article  CAS  PubMed  Google Scholar 

  153. Pang L, Wang J, Huang W, Guo S (2015) A study of divalent metal transporter 1 and ferroportin 1 in brain of rats with manganese-induced parkinsonism. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 33(4):250–254

    CAS  PubMed  Google Scholar 

  154. Achmad RT, Auerkari EI (2017) Effects of chromium on human body. Annual Research & Review in Biology 1–8

  155. Zafra-Stone S, Bagchi M, Preuss H, Bagchi D (2007) Benefits of chromium (III) complexes in animal and human health. Nutr Biochem Chromium (III) 183–206

  156. Chatterjee SJIJoAR (2015) Chromium Toxicity and its Health Hazards 3(7):167–72

  157. Pellerin C, Booker SM (2000) Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environ Health Perspect 108(9):A402-7. https://doi.org/10.1289/ehp.108-a402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S et al (2021) Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage 285:112174. https://doi.org/10.1016/j.jenvman.2021.112174

    Article  CAS  PubMed  Google Scholar 

  159. Godwill EA, Ferdinand PU, Nweke FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Karcioglu O, Arslan B (eds) Poisoning in the Modern World - New Tricks for an Old Dog?. IntechOpen. https://doi.org/10.5772/intechopen.82511

  160. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350

    Article  CAS  PubMed  Google Scholar 

  161. Zeng Q, Zou Z, Wang Q, Sun B, Liu Y, Liang B et al (2019) Association and risk of five miRNAs with arsenic-induced multiorgan damage. Sci Total Environ 680:1–9. https://doi.org/10.1016/j.scitotenv.2019.05.042

    Article  CAS  PubMed  Google Scholar 

  162. Palma-Lara I, Martínez-Castillo M, Quintana-Pérez J, Arellano-Mendoza M, Tamay-Cach F, Valenzuela-Limón O et al (2020) Arsenic exposure: a public health problem leading to several cancers. Regul Toxicol Pharmacol 110:104539

    Article  CAS  PubMed  Google Scholar 

  163. Zeng Q, Zhang A (2020) Assessing potential mechanisms of arsenic-induced skin lesions and cancers: Human and in vitro evidence. Environ Pollut Barking Essex: 1987 260:113919. https://doi.org/10.1016/j.envpol.2020.113919

    Article  CAS  Google Scholar 

  164. Ahmad S, Kitchin KT, Cullen WR (2000) Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys 382(2):195–202. https://doi.org/10.1006/abbi.2000.2023

    Article  CAS  PubMed  Google Scholar 

  165. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  PubMed  Google Scholar 

  166. Carter DE (1995) Oxidation-reduction reactions of metal ions. Environ Health Perspect 103(1):17–9. https://doi.org/10.1289/ehp.95103s117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang Y, Liu Y, Liu S, Wu B (2019) Influence of iron on cytotoxicity and gene expression profiles induced by arsenic in HepG2 cells. Int J Environ Res Public Health 16(22):4484. https://doi.org/10.3390/ijerph16224484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yan AN, Chun-Chun LI, Deng HYJFMS (2015) Current conditions of researches in arsenic-induced oxidative stress. Foreign Medical Sciences (Section of Medgeography) 3:165–173. https://doi.org/10.3969/j.issn.1001-8883.2015.03.001

  169. Wei S, Qiu T, Wang N, Yao X, Jiang L, Jia X et al (2020) Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. Environ Res 188:109824. https://doi.org/10.1016/j.envres.2020.109824

    Article  CAS  PubMed  Google Scholar 

  170. Tang Q, Bai L, Zou Z, Meng P, Xia Y, Cheng S et al (2018) Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure. Neurotoxicol 67:27–36. https://doi.org/10.1016/j.neuro.2018.04.012

    Article  CAS  Google Scholar 

  171. Xiao J, Zhang S, Tu B, Jiang X, Cheng S, Tang Q et al (2021) Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy. Food Chem Toxicol 151:112114. https://doi.org/10.1016/j.fct.2021.112114

    Article  CAS  PubMed  Google Scholar 

  172. Meng P, Zhang S, Jiang X, Cheng S, Zhang J, Cao X et al (2020) Arsenite induces testicular oxidative stress in vivo and in vitro leading to ferroptosis. Ecotoxicol Environ Saf 194:110360. https://doi.org/10.1016/j.ecoenv.2020.110360

  173. Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X et al (2020) Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 384:121390. https://doi.org/10.1016/j.jhazmat.2019.121390

    Article  CAS  PubMed  Google Scholar 

  174. Lanser L, Fuchs D, Kurz K, Weiss G (2021) Physiology and inflammation driven pathophysiology of iron homeostasis—mechanistic insights into anemia of inflammation and its treatment. Nutrients 13(11):3732. https://doi.org/10.3390/nu13113732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hyman MH (2004) The impact of mercury on human health and the environment. Altern Ther Health Med 10(6):70–5

    PubMed  Google Scholar 

  176. Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec 47(9):93–794. https://doi.org/10.1080/10643389.2017.1326277

  177. Kim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 5(306):376–85. https://doi.org/10.1016/j.jhazmat.2015.11.031

    Article  CAS  Google Scholar 

  178. Martins AC, Ke T, Bowman AB, Aschner M (2021) New insights on mechanisms underlying methylmercury-induced and manganese-induced neurotoxicity. Curr Opin Toxicol 25:30–5. https://doi.org/10.1016/j.cotox.2021.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ahmad S, Mahmood R (2019) Mercury chloride toxicity in human erythrocytes: enhanced generation of ROS and RNS, hemoglobin oxidation, impaired antioxidant power, and inhibition of plasma membrane redox system. Environ Sci Pollut Res Int 26(6):5645–57. https://doi.org/10.1007/s11356-018-04062-5

    Article  CAS  PubMed  Google Scholar 

  180. Chang J, Yang B, Zhou Y, Yin C, Liu T, Qian H et al (2019) Acute methylmercury exposure and the hypoxia-inducible factor-1alpha signaling pathway under normoxic conditions in the rat brain and astrocytes in vitro. Environ Health Perspect 127(12):127006. https://doi.org/10.1289/EHP5139

    Article  PubMed  PubMed Central  Google Scholar 

  181. Liu T, Gao Q, Yang B, Yin C, Chang J, Qian H et al (2020) Differential susceptibility of PC12 and BRL cells and the regulatory role of HIF-1alpha signaling pathway in response to acute methylmercury exposure under normoxia. Toxicol Lett 331:82–91. https://doi.org/10.1016/j.toxlet.2020.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liu Y, Zhu W, Ni D, Zhou Z, Gu JH, Zhang W et al (2020) Alpha lipoic acid antagonizes cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis-like cell death. J Nanobiotechnol 18(1):141. https://doi.org/10.1186/s12951-020-00700-8

    Article  CAS  Google Scholar 

  183. Zhang Y, Zhang P, Li Y (2020) Gut microbiota-mediated ferroptosis contributes to mercury exposure-induced brain injury in common carp. Metallomics 14(1) https://doi.org/10.1093/mtomcs/mfab072

  184. Antunes Dos Santos A, Ferrer B, Marques Goncalves F, Tsatsakis AM, Renieri EA, Skalny AV, et al (2018) Oxidative stress in methylmercury-induced cell toxicity. Toxics 6(3) https://doi.org/10.3390/toxics6030047

  185. Kumar A, Khushboo Pandey R, Sharma B (2020) Modulation of superoxide dismutase activity by mercury, lead, and arsenic. Biol Trace Elem Res 196(2):654–61. https://doi.org/10.1007/s12011-019-01957-3

    Article  CAS  PubMed  Google Scholar 

  186. Ghizoni H, de Souza V, Straliotto MR, de Bem AF, Farina M, Hort MA (2017) Superoxide anion generation and oxidative stress in methylmercury-induced endothelial toxicity in vitro. Toxicol In Vitro 38:19–26. https://doi.org/10.1016/j.tiv.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  187. Teschke R (2022) Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: molecular aspects in experimental liver injury. Int J Mol Sci 23(20 https://doi.org/10.3390/ijms232012213

Download references

Funding

This work was supported by the National Natural Science Foundations of China (82003402, 81860569), Guizhou Province Science and Technology Plan Project of China (No. ZK[2021] key 009) and the Excellent Young Talents Plan of Guizhou Medical University (No. [2021]102).

Author information

Authors and Affiliations

Authors

Contributions

Yuyan Xu: data collection, data analysis, data curation, writing—original draft, writing—review and editing, visualization, and funding acquisition. Ruobi Chen: data collection, data analysis, data curation, and writing—original draft. Qibing Zeng: design, resources, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding authors

Correspondence to Yuyan Xu or Qibing Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Chen, R. & Zeng, Q. Ferroptosis As a Mechanism for Health Effects of Essential Trace Elements and Potentially Toxic Trace Elements. Biol Trace Elem Res 201, 4262–4274 (2023). https://doi.org/10.1007/s12011-022-03523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03523-w

Keywords

Navigation