Skip to main content

Advertisement

Log in

The Effects of Chronic Lead Exposure on Testicular Development of Japanese Quail (Coturnix japonica): Histopathological Damages, Oxidative Stress, Steroidogenesis Disturbance, and Hypothalamus-Pituitary-Testis Axis Disruption

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead (Pb) becomes a global public health concern for its high toxicology. Birds are sensitive to environmental pollution and Pb contamination exerts multiple negative influences on bird life. Pb also impacts on avian reproductive system. Thus, in this study, we attempted to determine toxicological effects and possible mechanistic pathways of Pb on avian testicular development by using the model species—Japanese quail (Coturnix japonica). Male quail chicks of 1-week-old were exposed to 0, 50, 500, and 1000 ppm Pb concentrations in drinking water for 5 weeks when reaching sexual maturation. The results showed that high Pb doses (500 and 1000 ppm) induced testis atrophy and cloacal gland shrinkage. Microstructural damages of both hypothalamus and testis indicated the disruption of the hypothalamus-pituitary–gonadal (HPG) axis by Pb exposure. The decrease of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and testosterone (T) may also imply HPG axis disruption. Moreover, excess testicular oxidative damages featured by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) and decreasing catalase (CAT), glutathione (GSH), superoxide dismutase (SOD), glutathione-S-transferase (GST), and total antioxidant capacity (T-AOC) indicated increasing risks of reproductive dysfunction by Pb. Furthermore, increasing apoptosis and upregulation of gene expression associated with cell death suggested testicular abnormal development. In addition, molecular signaling involved with steroidogenesis in the testis was disturbed by Pb treatment. The study showed that Pb could impair testicular development and reproductive function by morphological and histological injury, hormone suppression, oxidative stress, cell death, and HPG axis disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available from the corresponding author on reasonable request.

Abbreviations

AR:

Androgen receptors

AST:

Cross-sectional area of the seminiferous tubules

Bcl-2:

B-cell lymphoma-2

CAT:

Catalase

Casp-3:

Caspase-3

Casp-9:

Caspase-9

Cyt-c:

Cytochrome c

DAX-1:

Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1

FSH:

Follicle stimulating hormone

FSHR:

Follicle-stimulating hormone receptor

FCR:

Feed conversion ratio

GSH:

Glutathione

GST:

Glutathione-S-transferase

HPG axis:

Hypothalamus-pituitary–gonadal axis

GnRH:

Gonadotropin-releasing hormone

IL-1β:

Interleukin 1 beta

LH:

Luteinizing hormone

LHR:

Luteinizing hormone receptor

MDA:

Malondialdehyde

NF-κB:

Nuclear factor kappa B

TNF-α:

Tumor necrosis factor alpha

P450scc:

Cytochrome P450 side-chain cleavage enzyme

P450c17:

Cytochrome P450 17α-hydroxylase/17,20-lyase

ROS:

Reactive oxygen species

SET:

Seminiferous epithelial thickness

SF-1:

Steroidogenic factor 1

SLD:

Seminiferous luminal diameter

SOD:

Superoxide dismutase

StAR:

Steroidogenic acute regulatory protein

STD:

Seminiferous tubular diameter

T:

Testosterone

T-AOC:

Total antioxidant capacity

3β-HSD:

3β-Hydroxysteroid dehydrogenase

17β-HSD:

17β-Hydroxysteroid dehydrogenase

References

  1. Sindhu KK, Sutherling WW (2015) Role of lead in the central nervous system: effect on electroencephalography, evoked potentials, electroretinography, and nerve conduction. Neurodiagn J 55(2):107–121. https://doi.org/10.1080/21646821.2015.1043222

    Article  PubMed  Google Scholar 

  2. Gandhi J, Hernandez RJ, Chen A, Smith NL, Sheynkin YR, Joshi G, Khan SA (2017) Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 25(2):103–110. https://doi.org/10.1017/S0967199417000028

    Article  CAS  PubMed  Google Scholar 

  3. He L, Chen Z, Dai B, Li G, Zhu G (2018) Low-level lead exposure and cardiovascular disease: the roles of telomere shortening and lipid disturbance. J Toxicol Sci 43(11):623–630. https://doi.org/10.2131/jts.43.623

    Article  CAS  PubMed  Google Scholar 

  4. Wang L, Zheng Y, Zhang G, Han X, Li S, Zhao H (2021) Lead exposure induced inflammation in bursa of Fabricius of Japanese quail (C. japonica) via NF-κB pathway activation and Wnt/β-catenin signaling inhibition. J Inorg Biochem 224: 111587. https://doi.org/10.1016/j.jinorgbio.2021.111587

  5. Chen J, Tong Y, Xu J, Liu X, Li Y, Tan M, Li Y (2012) Environmental lead pollution threatens the children living in the Pearl River Delta region. China Environ Sci Pollut Res Int 19(8):3268–3275. https://doi.org/10.1007/s11356-012-0837-9

    Article  CAS  PubMed  Google Scholar 

  6. Finkelstein ME, Doak DF, George D, Burnett J, Brandt J, Church M, Grantham J, Smith DR (2012) Lead poisoning and the deceptive recovery of the critically endangered California condor. Proc Natl Acad Sci U S A 109(28):11449–11454. https://doi.org/10.1073/pnas.1203141109

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grade TJ, Pokras MA, Laflamme EM, Vogel HS (2018) Population-level effects of lead fishing tackle on common loons. J Wildl Manage 82:155–164. https://doi.org/10.1002/jwmg.21348

    Article  Google Scholar 

  8. Pain DJ, Mateo R, Green RE (2019) Effects of lead from ammunition on birds and other wildlife: a review and update. Ambio 48(9):935–953. https://doi.org/10.1007/s13280-019-01159-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kou H, Fu Y, He Y, Jiang J, Gao X, Zhao H (2019) Chronic lead exposure induces histopathological damage, microbiota dysbiosis and immune disorder in the cecum of female Japanese quails (Coturnix japonica). Ecotoxicol Environ Saf 183:109588. https://doi.org/10.1016/j.ecoenv.2019.109588

    Article  CAS  PubMed  Google Scholar 

  10. Kou H, Ya J, Gao X, Zhao H (2020) The effects of chronic lead exposure on the liver of female Japanese quail (Coturnix japonica): histopathological damages, oxidative stress and AMP-activated protein kinase based lipid metabolism disorder. Ecotoxicol Environ Saf 190:110055. https://doi.org/10.1016/j.ecoenv.2019.110055

    Article  CAS  PubMed  Google Scholar 

  11. Fritsch C, Jankowiak Ł, Wysocki D (2019) Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci Rep 9(1):486. https://doi.org/10.1038/s41598-018-36463-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He Y, Wang L, Li X, Zhao H (2020) The effects of chronic lead exposure on the ovaries of female juvenile Japanese quails (Coturnix japonica): developmental delay, histopathological alterations, hormone release disruption and gene expression disorder. Ecotoxicol Environ Saf 205:111338. https://doi.org/10.1016/j.ecoenv.2020.111338

    Article  CAS  PubMed  Google Scholar 

  13. Aithamadouche N, Sadi N, Kharoubi O, Slimani M, Aoues A (2013) The protective effect of vitamin E against genotoxicity of lead acetate intraperitoneal administration in male rat. Not Sci Biol 5(4):412–419. https://doi.org/10.15835/nsb549125

  14. Mabrouk A (2018) Therapeutic effect of thymoquinone against lead-induced testicular histological damage in male Wistar rats. Andrologia 50(6):e13014. https://doi.org/10.1111/and.13014

    Article  CAS  PubMed  Google Scholar 

  15. Huang H, Wang Y, An Y, Jiao W, Xu Y, Han Q, Teng X, Teng X (2019) Selenium alleviates oxidative stress and autophagy in lead-treated chicken testes. Theriogenology 131:146–152. https://doi.org/10.1016/j.theriogenology.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  16. Vallverdú-Coll N, Mougeot F, Ortiz-Santaliestra ME, Castaño C, Santiago-Moreno J, Mateo R (2016) Effects of lead exposure on sperm quality and reproductive success in an avian model. Environ Sci Technol 50(22):12484–12492. https://doi.org/10.1021/acs.est.6b04231

    Article  CAS  PubMed  Google Scholar 

  17. Vigeh M, Smith DR, Hsu PC (2011) How does lead induce male infertility? Iran J Reprod Med 9(1):1–8

    PubMed  PubMed Central  Google Scholar 

  18. Matuq Al-Yasi H, El-Shazly SA, Ahmed EF, Hasan Alamer K, Hessini KY, Attia HA, Alkafafy ME, Mohamed AA, Hassan FA (2021) Protective effects of taif rosewater against testicular impairment induced by lead intoxication in rats. Andrologia 53(6):e14045. https://doi.org/10.1111/and.14045

    Article  CAS  PubMed  Google Scholar 

  19. Huss D, Poynter G, Lansford R (2008) Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Anim 37(11):513–519. https://doi.org/10.1038/laban1108-513

    Article  Google Scholar 

  20. Morgan GW, Edens FW, Thaxton P, Parkhurst CR (1975) Toxicity of dietary lead in Japanese quail. Poult Sci 54(5):1636–1646. https://doi.org/10.3382/ps.0541636

    Article  CAS  PubMed  Google Scholar 

  21. Stone CL, Soares JH Jr (1976) The effect of dietary selenium level on lead toxicity in the Japanese quail. Poult Sci 55(1):341–349. https://doi.org/10.3382/ps.0550341

    Article  CAS  PubMed  Google Scholar 

  22. Banerjee S, Shahin S, Chaturvedi CM (2018) Age dependent variations in the deep brain photoreceptors (DBPs), GnRH-GnIH system and testicular steroidogenesis in Japanese quail, Coturnix coturnix japonica. Exp Gerontol 108:7–17. https://doi.org/10.1016/j.exger.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  23. Kyrylkova K, Kyryachenko S, Leid M, Kioussi C (2012) Detection of apoptosis by TUNEL assay. Methods Mol Biol 887:41–47. https://doi.org/10.1007/978-1-61779-860-3_5

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad F, Liu P (2020) (Ascorb)ing Pb Neurotoxicity in the developing brain. Antioxidants (Basel) 9(12):1311. https://doi.org/10.3390/antiox9121311

    Article  CAS  PubMed  Google Scholar 

  25. White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, Virgolini M, Rossi-George A, Lasley SM, Qian YC, Basha MR (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225(1):1–27. https://doi.org/10.1016/j.taap.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Hossain S, Bhowmick S, Jahan S, Rozario L, Sarkar M, Islam S, Basunia MA, Rahman A, Choudhury BK, Shahjalal H (2016) Maternal lead exposure decreases the levels of brain development and cognition-related proteins with concomitant upsurges of oxidative stress, inflammatory response and apoptosis in the offspring rats. Neurotoxicology 56:150–158. https://doi.org/10.1016/j.neuro.2016.07.013

    Article  CAS  PubMed  Google Scholar 

  27. Santa Maria MP, Hill BD, Kline J (2019) Lead (Pb) neurotoxicology and cognition. Appl Neuropsychol Child 8(3):272–293. https://doi.org/10.1080/21622965.2018.1428803

    Article  PubMed  Google Scholar 

  28. Sokol RZ (1987) Hormonal effects of lead acetate in the male rat: mechanism of action. Biol Reprod 37(5):1135–1138. https://doi.org/10.1095/biolreprod37.5.1135

    Article  CAS  PubMed  Google Scholar 

  29. Kruk MR, Westphal KG, Van Erp AM, van Asperen J, Cave BJ, Slater E, de Koning J, Haller J (1998) The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci Biobehav Rev 23(2):163–177. https://doi.org/10.1016/s0149-7634(98)00018-9

    Article  CAS  PubMed  Google Scholar 

  30. Leng G, MacGregor DJ (2018) Models in neuroendocrinology. Math Biosci 305:29–41. https://doi.org/10.1016/j.mbs.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  31. Moore AM, Coolen LM, Lehman MN (2022) In vivo imaging of the GnRH pulse generator reveals a temporal order of neuronal activation and synchronization during each pulse. Proc Natl Acad Sci U S A 119(6):e2117767119. https://doi.org/10.1073/pnas.2117767119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Osada M, Treen N (2013) Molluscan GnRH associated with reproduction. Gen Comp Endocrinol 181:254–258. https://doi.org/10.1016/j.ygcen.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  33. Luo J, Yang Y, Zhang T, Su Z, Yu D, Lin Q, Chen H, Zhang Q, Xiang Q, Xue W, Ge R, Huang Y (2018) Nasal delivery of nerve growth factor rescue hypogonadism by up-regulating GnRH and testosterone in aging male mice. EBio Medicine 35:295–306. https://doi.org/10.1016/j.ebiom.2018.08.021

    Article  Google Scholar 

  34. Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N (2008) Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol 109(3–5):323–330. https://doi.org/10.1016/j.jsbmb.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  35. Ooi GT, Tawadros N, Escalona RM (2004) Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol 228(1–2):1–21. https://doi.org/10.1016/j.mce.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  36. Ait Hamadouche N, Nesrine S, Abdelkeder A (2013) Lead toxicity and the hypothalamic-pituitary-testicular axis. Not Sci Biol 5(1): 1–6. https://doi.org/10.15835/nsb518038

  37. Sambroni E, Rolland AD, Lareyre JJ, Le Gac F (2012) FSH and LH have common and distinct effects on gene expression in rainbow trout testis. J Mol Endocrinol 50(1):1–18. https://doi.org/10.1530/JME-12-0197

    Article  CAS  PubMed  Google Scholar 

  38. Ye L, Su ZJ, Ge RS (2011) Inhibitors of testosterone biosynthetic and metabolic activation enzymes. Molecules 16(12):9983–10001. https://doi.org/10.3390/molecules16129983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao HT, Di QN, Qian LL, Lu L, Li RX, Cao WX, Xu Q (2020) Zinc supplement ameliorates phthalates-induced reproductive toxicity in male rats. Chemosphere 246:125828. https://doi.org/10.1016/j.chemosphere.2020.125828

    Article  CAS  PubMed  Google Scholar 

  40. Zirkin BR, Papadopoulos V (2018) Leydig cells: formation, function, and regulation. Biol Reprod 99(1):101–111. https://doi.org/10.1093/biolre/ioy059

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sorwell KG, Urbanski HF (2010) Dehydroepiandrosterone and age-related cognitive decline Age (Dordr) 32(1):61–67. https://doi.org/10.1007/s11357-009-9113-4

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Guo J, Jiang X, Sun J, Tian L, Jiao R, Tang Y, Bai W (2019) Cyanidin-3-O-glucoside protects against cadmium-induced dysfunction of sex hormone secretion via the regulation of hypothalamus-pituitary-gonadal axis in male pubertal mice. Food Chem Toxicol 129:13–21. https://doi.org/10.1016/j.fct.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  43. Klemm RD, Knight CE, Stein S (1973) Gross and microscopic morphology of the glandula proctodealis (foam gland) of Coturnix c. japonica (aves). J Morphol 141(2): 171–184. https://doi.org/10.1002/jmor.1051410205

  44. Singh RP, Sastry KV, Pandey NK, Singh KB, Malecki IA, Farooq U, Mohan J, Saxena VK, Moudgal RP (2012) The role of the male cloacal gland in reproductive success in Japanese quail (Coturnix japonica). Reprod Fertil Dev 24(2):405–409. https://doi.org/10.1071/RD11057

    Article  CAS  PubMed  Google Scholar 

  45. Lin L, Achermann JC (2008) Steroidogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis development. Sex Dev 2(4–5):200–209. https://doi.org/10.1159/000152036

    Article  CAS  PubMed  Google Scholar 

  46. Młynarczuk J, Rękawiecki R (2010) The role of the orphan receptor SF-1 in the development and function of the ovary. Reprod Biol 10(3):177–193

    Article  PubMed  Google Scholar 

  47. Gardiner JR, Shima Y, Morohashi K, Swain A (2012) SF-1 expression during adrenal development and tumourigenesis. Mol Cell Endocrinol 351(1):12–18. https://doi.org/10.1016/j.mce.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  48. Martin LJ, Boucher N, El-Asmar B, Tremblay JJ (2009) cAMP-induced expression of the orphan nuclear receptor Nur77 in MA-10 Leydig cells involves a CaMKI pathway. J Androl 30(2):134–145. https://doi.org/10.2164/jandrol.108.006387

    Article  CAS  PubMed  Google Scholar 

  49. Qamar I, Gong EY, Kim Y, Song CH, Lee HJ, Chun SY, Lee K (2010) Anti-steroidogenic factor ARR19 inhibits testicular steroidogenesis through the suppression of Nur77 transactivation. J Biol Chem 285(29):22360–22369. https://doi.org/10.1074/jbc.M109.059949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo IC, Hu MC, Chung BC (2003) Transcriptional regulation of CYP11A1. J Biomed Sci 10(6 Pt 1):593–598. https://doi.org/10.1159/000073524

    Article  CAS  PubMed  Google Scholar 

  51. Hong CY, Park JH, Ahn RS, Im SY, Choi HS, Soh J, Mellon SH, Lee K (2004) Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24(7):2593–2604. https://doi.org/10.1128/MCB.24.7.2593-2604.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang ZJ, Jeffs B, Ito M, Achermann JC, Yu RN, Hales DB, Jameson JL (2001) Aromatase (Cyp19) expression is up-regulated by targeted disruption of Dax1. Proc Natl Acad Sci U S A 98(14):7988–7993. https://doi.org/10.1073/pnas.141543298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song KH, Park YY, Park KC, Hong CY, Park JH, Shong M, Lee K, Choi HS (2004) The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Mol Endocrinol 18(8):1929–1940. https://doi.org/10.1210/me.2004-0043

    Article  CAS  PubMed  Google Scholar 

  54. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li X, Zheng Y, Zhang G, Wang R, Jiang J, Zhao H (2021) Cadmium induced cardiac toxicology in developing Japanese quail (Coturnix japonica): histopathological damages, oxidative stress and myocardial muscle fiber formation disorder. Comp Biochem Physiol C Toxicol Pharmacol 250:109168. https://doi.org/10.1016/j.cbpc.2021.109168

    Article  CAS  PubMed  Google Scholar 

  56. Carvalho Cdos S, Bernusso VA, Fernandes MN (2015) Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus). Aquat Toxicol 167:220–227. https://doi.org/10.1016/j.aquatox.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  57. Lee JW, Choi H, Hwang UK, Kang JC, Kang YJ, Kim KI, Kim JH (2019) Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Environ Toxicol Pharmacol 68:101–108. https://doi.org/10.1016/j.etap.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  58. Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environ Pollut 158(7):2359–2370. https://doi.org/10.1016/j.envpol.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  59. Devóz PP, Reis MBD, Gomes WR, Maraslis FT, Ribeiro DL, Antunes LMG, Batista BL, Grotto D, Reis RM, Barbosa F Jr, Barcelos GRM (2021) Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. Chemosphere 269:128758. https://doi.org/10.1016/j.chemosphere.2020.128758

    Article  CAS  PubMed  Google Scholar 

  60. Jin Y, Wang L, Ruan M, Liu J, Yang Y, Zhou C, Xu B, Fu Z (2011) Cypermethrin exposure during puberty induces oxidative stress and endocrine disruption in male mice. Chemosphere 84(1):124–130. https://doi.org/10.1016/j.chemosphere.2011.02.034

    Article  CAS  PubMed  Google Scholar 

  61. Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem 8(7):851–862. https://doi.org/10.2174/0929867013373039

    Article  CAS  PubMed  Google Scholar 

  62. Rezaei N, Mardanshahi T, Shafaroudi MM, Abedian S, Mohammadi H, Zare Z (2018) Effects of l-carnitine on the follicle-stimulating hormone, luteinizing hormone, testosterone, and testicular tissue oxidative stress levels in streptozotocin-induced diabetic rats. J Evid Based Integr Med 23: 2515690X18796053. https://doi.org/10.1177/2515690X18796053

  63. Abdel-Emam RA, Ahmed EA (2021) Ameliorative effect of L-carnitine on chronic lead-induced reproductive toxicity in male rats. Vet Med Sci 7(4):1426–1435. https://doi.org/10.1002/vms3.473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Çeribaşı S, Türk G, Özçelik M, Doğan G, Çeribaşı AO, Mutlu Sİ, Erişir Z, Güvenç M, Güngören G, Acısu TC, Akarsu SA, Kaya ŞÖ, Sönmez M, Yüce A, Çiftçi M, Çambay Z, Bağcı E, Azman MA, Şimşek ÜG (2020) Negative effect of feeding with high energy diets on testes and metabolic blood parameters of male Japanese quails, and positive role of milk thistle seed. Theriogenology 144:74–81. https://doi.org/10.1016/j.theriogenology.2019.12.021

    Article  CAS  PubMed  Google Scholar 

  65. Vitagliano O, Addeo R, D’Angelo V, Indolfi C, Indolfi P, Casale F (2013) The Bcl-2/Bax and Ras/Raf/MEK/ERK signaling pathways: implications in pediatric leukemia pathogenesis and new prospects for therapeutic approaches. Expert Rev Hematol 6(5):587–597. https://doi.org/10.1586/17474086.2013.827415

    Article  CAS  PubMed  Google Scholar 

  66. Wang Q, Zhang L, Yuan X, Ou Y, Zhu X, Cheng Z, Zhang P, Wu X, Meng Y, Zhang L (2016) The relationship between the Bcl-2/Bax proteins and the mitochondria-mediated apoptosis pathway in the differentiation of adipose-derived stromal cells into neurons. PLoS One 11(10):e0163327. https://doi.org/10.1371/journal.pone.0163327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang T, Yan Z, Zheng X, Wang S, Fan J, Liu Z (2020) Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea). Fish Shellfish Immunol 99:514–525. https://doi.org/10.1016/j.fsi.2020.02.046

    Article  CAS  PubMed  Google Scholar 

  68. Winnall WR, Muir JA, Hedger MP (2011) Rat resident testicular macrophages have an alternatively activated phenotype and constitutively produce interleukin-10 in vitro. J Leukoc Biol 90(1):133–143. https://doi.org/10.1189/jlb.1010557

    Article  CAS  PubMed  Google Scholar 

  69. Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R (2012) Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol 34(3):298–307. https://doi.org/10.1016/j.reprotox.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  70. Hu X, Chi Q, Wang D, Chi X, Teng X, Li S (2018) Hydrogen sulfide inhalation-induced immune damage is involved in oxidative stress, inflammation, apoptosis and the Th1/Th2 imbalance in broiler bursa of Fabricius. Ecotoxicol Environ Saf 164:201–209. https://doi.org/10.1016/j.ecoenv.2018.08.029

    Article  CAS  PubMed  Google Scholar 

  71. Lysiak JJ (2004) The role of tumor necrosis factor-alpha and interleukin-1 in the mammalian testis and their involvement in testicular torsion and autoimmune orchitis. Reprod Biol Endocrinol 2:9. https://doi.org/10.1186/1477-7827-2-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for Ms. Yuhan Fang for experimental assistance and for Ms. Xuan Li, Ling Wang, and Gaixia Zhang for valuable suggestions about the manuscript.

Funding

The study was supported by the National Natural Science Foundation of China (No. 33372201).

Author information

Authors and Affiliations

Authors

Contributions

Zheng Y: Conceptualization, Methodology, Data curation, Writing-Original draft preparation; Zhang QY, Jing LY, and Fei YF: Data curation, Visualization, and Software; Zhao HF: Conceptualization, Methodology, Writing-Original draft preparation, Supervision; All authors reviewed the manuscript.

Corresponding author

Correspondence to Hongfeng Zhao.

Ethics declarations

Ethics Approval

Animal care and experiment operations were approved and conducted in accordance with the Animal Care Guidelines of Shaanxi Normal University (No. SNNU52).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1.

Cloacal glands of quails in different Pb-treated groups. (A) control; (B) 50 ppm; (C) 500 ppm; (D) 1000 ppm. (PNG 5136 kb)

High resolution image (TIF 42934 kb)

Table S1

Primer sequences used in RT-PCR analysis for genes expression of male Japanese quails. (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, Q., Jing, L. et al. The Effects of Chronic Lead Exposure on Testicular Development of Japanese Quail (Coturnix japonica): Histopathological Damages, Oxidative Stress, Steroidogenesis Disturbance, and Hypothalamus-Pituitary-Testis Axis Disruption. Biol Trace Elem Res 201, 3446–3460 (2023). https://doi.org/10.1007/s12011-022-03436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03436-8

Keywords

Navigation