Skip to main content

Advertisement

Log in

Effect of Crude Glycerin in the Feed of Lactating Goats on Concentrations of Essential and Toxic Metals in Serum, Urine, Milk, and Artisanal “Coalho” Cheese

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Goat farming is concentrated in semi-arid and tropical regions in Brazil. From 2006 to 2017, the number of goats sold in the country increased by 65.7%. The dairy products from these animals present higher digestibility, high vitamin A and B content, hypoallergenicity, and less lactose compared to dairy products from cows, in addition to having a higher sales value. Since corn and soybean meal generate an expense for feed management, crude glycerin, originating from the manufacture of biodiesel, has been studied as an energy substitute. However, this product contains heavy metals, posing risks to animal and human health. Few data are available on trace elements in biological samples and products derived from goats’ milk with the dietary introduction of glycerin. The objective was to quantify aluminum (Al), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), and zinc (Zn) in the serum, urine, milk, and artisanal “coalho” cheese of dairy goats fed different levels of crude glycerin in feed management. In total, 16 Saanen goats were selected, lactating females, that were distributed in four Latin squares and randomly treated with different levels of crude glycerin (0, 5, 10, and 15%). After the end of each experiment cycle, serum, urine, milk, and artisanal “coalho” cheese samples were collected at the four moments. The samples were submitted to digestion assisted by microwave radiation. The multi-element analysis was carried out using inductively coupled plasma optical emission spectrometry (ICP OES). There was no influence of crude glycerin levels replacing corn in serum, milk, urine, and artisanal “coalho” cheese. The serum concentration of the metals Cu, Fe, Zn, and Mn; urine concentrations of Cu, Zn, Mn, Mo, and Cr; and milk and artisanal “coalho” cheese concentrations of Cu, Zn, and Mn remained within the standards found in the literature. The inclusion of 5 to 15% of crude glycerin, derived from cotton oil, in the diets of dairy goats in partial replacement of corn, does not alter the concentration of essential and toxic metals in serum, urine, milk, and artisanal “coalho” cheese and does not, therefore, present a risk factor for intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors declare that study data are available from.

the corresponding author at readers’ request.

References

  1. Beserra VA, Cesar AS, Peres AC (2016) Adoption of crude glycerin in animal diet and their impact on the final product. Arch Zootec 65:259–266. https://doi.org/10.21071/az.v65i250.498

    Article  CAS  Google Scholar 

  2. Rodrigues FV, Rondina D (2013) An alternative use of biodiesel sub-products as feed ingredients for ruminants: the crude glycerin. Acta Vet Bras 7:91–99. https://doi.org/10.21708/avb.2013.7.2.2801

    Article  Google Scholar 

  3. Lage JF, Paulimo PVR, Pereira LGR, Duarte MS, Valadares Filho SC, Oliveira AS, Souza KP, Lima JCM (2014) Carcass characteristics of feedlot lambs fed crude glycerin contaminated with high concentrations of crude fat. Meat Sci 96:108–113. https://doi.org/10.1016/j.meatsci.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  4. Clasen CD, Lisboa MT, Pinto AMTP, Ribeiro AS, Vieira AM (2015) Evaluation by atomic spectrometry of solubilization methods for the determination of metals in glycerin from biodiesel production. Quim Nova 38:77–84. https://doi.org/10.5935/0100-4042.20140287

    Article  CAS  Google Scholar 

  5. Lage JF, Paulino PV, Pereira LGR, Valadares FSC, de Oliveira AS, Detmann E, Souza NKP, Lima JCM (2010) Crude glycerin on finishing lamb diets. Pesq Agro Bras 45:1012–1020. https://doi.org/10.1590/S0100-204X2010000900011

    Article  Google Scholar 

  6. Van Cleef EHCB, Aurea APD, Fávaro VR, Cleef FOS, Barducci RS, Almeida MTC, Machado Neto OR, Jane M, Ezequiel B (2017) Effects of dietary inclusion of high concentrations of crude glycerin on meat quality and fatty acid profile of feedlot fed Nellore bulls. PLoS ONE 12:e0179830. https://doi.org/10.1371/journal.pone.0179830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paiva PG, Rennó FP, Del Valle TA, Jesus EF, Santos FCR, Costa AGBVB, Cabral GF, Almeida GF (2015) Glycerin in cattle feed. Sci Anim Health 3:31–55. https://doi.org/10.15210/sah.v3i1.3922

    Article  Google Scholar 

  8. Andrade GP, Carvalho FFR, Batista AMV, Pessoa RAS, Costa CA, CARDOSO DB, Maciel MV (2018) Evaluation of crude glycerin as a partial substitute of corn grain in growing diets for lambs. Small Rumin Res 165:41–47. https://doi.org/10.1016/j.smallrumres.2018.06.002

    Article  Google Scholar 

  9. Duque ACA, Lopes FCF, Oliveira JS, Morenz MJF, Reis LG, Silva JS, Borges ALCC, Silva RR (2018) Glycerin replacing corn in the concentrate of lactating cows. Rev Bras Cien Vet 25:60–66. https://doi.org/10.4322/rbcv.2018.01

    Article  Google Scholar 

  10. Wilbert CA, Prates ER, Barcellos JOJ, Schafhäuser J (2013) Crude glycerin as an alternative energy feedstuff for dairy cows. Anim Feed Sci Technol 183:116–123. https://doi.org/10.1016/j.anifeedsci.2013.05.003

    Article  CAS  Google Scholar 

  11. Eiras CE, Barbosa LP, Marques JA, Araújo FL, Lima BS, Zawadzki F, Perottoc D, Prado IN (2014) Glycerine levels in the diets of crossbred bulls finished in feedlot: Apparent digestibility, feed intake and animal performance. Anim Feed Sci Technol 197:222–226. https://doi.org/10.1016/j.anifeedsci.2014.07.004

    Article  CAS  Google Scholar 

  12. Valls M, Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacterium for remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338. https://doi.org/10.1111/j.1574-6976.2002.tb00618.x

    Article  CAS  PubMed  Google Scholar 

  13. Gonçalves JR, Mesquita AJ, Gonçalves RM (2008) Determining heavy metals in pasteurized whole bovine milk in state of Goiás. Cien Anim Bras 9:365–374

    Google Scholar 

  14. Wang C, Liu Q, Yang WZ, Huo WJ, Dong KH, Huang YX, Yang XM, He DC (2009) Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Anim Feed Sci Technol 151:12–20. https://doi.org/10.1016/j.anifeedsci.2008.10.009

    Article  CAS  Google Scholar 

  15. Embrapa (2018) Panorama da ovinocultura e da caprinocultura a partir do Censo Agropecuário 2017. In: Boletim do Centro de Inteligência e Mercado de Caprinos e Ovinos. Embrapa Caprinos e Ovinos, Sobral, Brazil. https://www.bdpa.cnptia.embrapa.

  16. Catunda KLM, Aguiar EM, Silva JGM, Rangel AHN (2016) Leite caprino: características nutricionais, organolépticas e importância do consumo. Rev Centauro 7:34–55

    Google Scholar 

  17. Oliveira ENA, Santos DC, Almeida FLC, Feitosa BF, Feitosa RM (2018) Characterization of crafted cheeses marketed in municipalities of Ceará. Rev E-xacta 11:55–62. https://doi.org/10.18674/exacta.v11i2.2493

    Article  Google Scholar 

  18. Zhang RH, Mustafa AF, Zhao X (2006) Effects of feeding oilseeds rich in linoleic and linolenic fatty acids to lactating ewes on cheese yield and on fatty acid composition of milk and cheese. Anim Feed Sci Technol 127:220–233. https://doi.org/10.1016/j.anifeedsci.2005.09.001

    Article  CAS  Google Scholar 

  19. Mughetti L, Sinesio F, Acuti G, Antonini C, Moneta E, Peparaio M, Trabalza-Marinucci M (2012) Integration of extruded linseed into dairy sheep diets: effects on milk composition and quality and sensorial properties of Pecorino cheese. Anim Feed Sci Technol 178:27–39. https://doi.org/10.1016/j.anifeedsci.2012.09.005

    Article  CAS  Google Scholar 

  20. Kass M, Ariko T, Samarütel J, Ling K, Jaakson H, Kaart T, Arney D, Kärt O, Ots M (2013) Long-term oral drenching of crude glycerol to primiparous dairy cows in early lactation. Anim Feed Sci Technol 184:58–66. https://doi.org/10.1016/j.anifeedsci.2013.06.004

    Article  CAS  Google Scholar 

  21. Vargas-Bello-Pérez E, Vera RR, Aguilar C, Lira R, Peña I, Fernández J (2013) Feeding olive cake to ewes improves fatty acid profile of milk and cheese. Anim Feed Sci Technol 184:94–99. https://doi.org/10.1016/j.anifeedsci.2013.05.016

    Article  CAS  Google Scholar 

  22. Paraskevakis N (2015) Effects of dietary dried Greek Oregano (Origanum vulgare ssp. hirtum) supplementation on blood and milk enzymatic antioxidant indices, on milk total antioxidant capacity and on productivity in goats. Anim Feed Sci Technol 209:90–97. https://doi.org/10.1016/j.anifeedsci.2015.09.001

    Article  CAS  Google Scholar 

  23. Paiva PG, Del Valle TA, Jesus EF, Bettero VP, Almeida GF, Bueno ICF, Bradford BJ, Rennó FP (2016) Effects of crude glycerin on milk composition, nutrient digestibility and ruminal fermentation of dairy cows fed corn silage-based diets. Anim Feed Sci Technol 212:136–142. https://doi.org/10.1016/j.anifeedsci.2015.12.016

    Article  CAS  Google Scholar 

  24. Todaro M, Alabiso M, Scatassa ML, Di Grigoli A, Mazza F, Maniaci G, Bonanno A (2017) Effect of the inclusion of fresh lemon pulp in the diet of lactating ewes on the properties of milk and cheese. Anim Feed Sci Technol 225:213–223. https://doi.org/10.1016/j.anifeedsci.2017.02.003

    Article  CAS  Google Scholar 

  25. Castagnino PS, Dallantonia EF, Fiorentini G, San Vito E, Messana JD, Lima LO, Simioni TA, Berchielli TT (2018) Changes in ruminal fermentation and microbial population of feedlot Nellore cattle fed crude glycerin and virginiamycin. Anim Feed Sci Technol 242:69–76. https://doi.org/10.1016/j.anifeedsci.2018.05.007

    Article  CAS  Google Scholar 

  26. Guo C, Xue Y, Yin Y, Sun D, Xuan H, Liu J, Mao S (2020) The effect of glycerol or rumen-protected choline chloride on rumen fermentation and blood metabolome in pregnant ewes suffering from negative energy balance. Anim Feed Sci Technol 268:114594. https://doi.org/10.1016/j.anifeedsci.2020.114594

    Article  CAS  Google Scholar 

  27. NRC (2007) Nutrient Requirements of small ruminant: Sheep, goats, cervids, and new world camelids, 6th edn. National Academic Press, Washington, USA

    Google Scholar 

  28. AOAC 2000.Association of Official Analytical Chemists. Official Methods of Analysis. Washington, 14ª ed.

  29. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  PubMed  Google Scholar 

  30. Mertens D R (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. J Aoac Intern 85:1217–1240. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260983893.

  31. Licitra G, Hernandez TM, Van Soest PJ (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Sci Technol 57:347–358. https://doi.org/10.1016/0377-8401(95)00837-3

    Article  Google Scholar 

  32. Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russel JB (1992) A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 70:3562–3577. https://doi.org/10.2527/1992.70113562x

    Article  CAS  PubMed  Google Scholar 

  33. Hall MB (2000) Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. Bulletin - University of Florida, Gainesvill, p 339

    Google Scholar 

  34. da Silva IJS, Lavorante AF, Paim APS, da Silva MJ (2020) Microwave-assisted digestion employing diluted nitric acid for mineral determination in rice by ICP OES. Food Chem 319:126435. https://doi.org/10.1016/j.foodchem.2020.126435

    Article  CAS  PubMed  Google Scholar 

  35. Gouveia ST, Silva FV, Costa LM, Nogueira ARA, Nóbrega JA (2001) Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations. Anal Chim Acta 445:269–275. https://doi.org/10.1016/S0003-2670(01)01255-7

    Article  CAS  Google Scholar 

  36. Analytical Methods Committee (1987) Recommendations for definition and use of detection limits. Analyst 11:199–204. https://doi.org/10.1039/AN9871200199

    Article  Google Scholar 

  37. SAS (2011) Statistical Analysis Systems Institute, Version 9.3. SAS Institute Inc, Cary NC USA

    Google Scholar 

  38. Little TM, Hills FJ (1978) Agricultural experimentation: design and analysis. John Wiley & Sons Inc, New York, USA

    Google Scholar 

  39. Barin JS, Bizzi CA, Flores EMM, Nóbrega JA, Krug FJ (2019) Decomposição de materiais orgânicos por via úmida. In: Krug JF, Rocha FRP (ed) Métodos de preparo de amostras para análise elementar. EditSBQ, São Paulo, Brazil.

  40. US EPA (2018) United States Environmental Protection Agency. Method 6010D (SW-846): inductively coupled plasma optical emission spectrometry. Update VI, Revision 5. https://www.epa.gov/sites/default/files/2015-12/documents/6010d.pdf. Accessed 17 August 2022

  41. Underwood EJ, Suttle NF (1999) The Mineral Nutrition of Livestock, 3rd edn. CABI Publishing, Wallingford, UK

    Book  Google Scholar 

  42. Kaneko J, Harvey J, Bruss M (2008) Clinical biochemistry of domestic animals, 6th edn. Academic Press, USA

    Google Scholar 

  43. Schweinzer V, Iwersen M, Drillich M, Wittek T, Tichy A, Mueller A, Krametter-Froetscher R (2017) Macromineral and trace element supply in sheep and goats in Austria. Vet Med 62:62–73. https://doi.org/10.17221/243/2015-VETMED

    Article  CAS  Google Scholar 

  44. González FHD, Silva SC (2017) Introdução a bioquímica veterinária, 3rd edn. Universidade Federal do Rio Grande do Sul Editora, Porto Alegre

    Google Scholar 

  45. Suttle NF (2010) Mineral Nutrition of Livestock, 4th edn. CABI Publishing, Cambridge, UK

    Book  Google Scholar 

  46. González FHD, Silva SC (2019) Minerais e vitaminas no metabolismo animal, 1st edn. Universidade Federal do Rio Grande do Sul, Porto Alegre, Laboratório de Análises Clínicas

    Google Scholar 

  47. Ahamad SR, Alhaider AQ, Shakeel F (2017) Metabolomic and elemental analysis of camel and bovine urine by GC-MS and ICP-MS. Saudi J Biol Sci 24:23–29. https://doi.org/10.1016/j.sjbs.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  48. Neto JP, Soares PC, Batista AMV, Andrade SFJ, Andrade RPX, Lucena RB, Guim A (2016) Water balance and renal excretion of metabolites in sheep fed forage cactus (Nopalea cochenillifera Salm Dyck). Pesq Vet Bras 36:322–328. https://doi.org/10.1590/S0100-736X2016000400012

    Article  Google Scholar 

  49. Langhans W, Rossi R, Scharrer E (1995) Relationships between feed and water intake in ruminants. In Englehardt WV, Leonhard-Marek S, Breves G, Giesecke D. (ed.) Ruminant physiology: digestion, metabolism, growth reproduction, proceedings of the eighth international on ruminant physiology. Ferdinand Enke Verlag, Stuttgart, German.

  50. Akinsoyinu AO, Tewe OO, Mba AU (1979) Concentration of trace elements in milk of west African dwarf goats affected by state of lactation. J Dairy Sci 62:921–924. https://doi.org/10.3168/jds.S0022-0302(79)83349-4

    Article  CAS  Google Scholar 

  51. Baquero MF, Álvarez Ríos S, Rodríguez ER, Romero CD, Martín JD (2011) Influence of diet and rennet on the composition of goats’ milk and cheese. J Dairy Res 78:250–256. https://doi.org/10.1017/S0022029911000161

    Article  CAS  Google Scholar 

  52. Al-awadi FM, Srikumar TS (2001) Trace elements and their distribution in protein fractions of camel milk in comparison to other commonly consumed milks. J Dairy Res 68:463–469. https://doi.org/10.1017/s0022029901005003

    Article  CAS  PubMed  Google Scholar 

  53. Bossu CM, Rodrigo G, Oliveira MCS, Oliveira PV, Nogueira ARA (2021) Zinc fractionation in cow, goat, sheep and soybean milk samples using gel-electrophoresis and determination by electrothermal atomic absorption spectrometry (ETAAS) Eclética Química 46:12–20. https://doi.org/10.26850/1678-4618eqj.v46.1.2021.p12-20

  54. Moniello G, Infascelli F, Pinna W, Camboni G (2005) Mineral requirements of dairy sheep. Italian J Anim Sci 4:63–74. https://www.researchgate.net/publication/235.

  55. Pereira Júnior JB, Fernandes KG, Müller RCS (2009) Direct determination of Ca, Mg, Mn and Zn in buffalo milk of the Marajó Island by FAAS. Quim Nova 32:2333–2335. https://doi.org/10.1590/S0100-40422009000900018

    Article  Google Scholar 

  56. Anvisa (2021) Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada – RDC 487. https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-487-de-26-de-marco-de-2021-311593455.

  57. Flynn A (1992) Minerals and trace elements in milk. Adv Food Nutr Res 36:209–252

    Article  CAS  PubMed  Google Scholar 

  58. Murta PHGA (1993) Influência da poluição ambiental sobre a qualidade do leite. Hig Alim 7:12–14

    Google Scholar 

  59. Macedo ATM (2019) Análise epidemiológica da presença de metais no soro sanguíneo e leite cru de vacas leiteiras do estado de Pernambuco. Thesis, Rural Federal University of Pernambuco, Brasil

    Google Scholar 

  60. Kira CS, Maihara VA (2007) Determination of minerals and trace elements in cheese by inductively-coupled plasma optical emission spectrometry after partial digestion. Cien Tecn Alim 27:446–450. https://doi.org/10.1590/S0101-20612007000300004

    Article  CAS  Google Scholar 

  61. Yilmaz DD (2012) Effect of feeding habits of cows on trace element contents of some dairy products. Karaelmas Sci Engin J 2:13–17

    Article  Google Scholar 

  62. Borys M, Pakulski T, Borys B, Pakulska E, Węgrzyn E (2006) The content and retention of some major and trace minerals in sheep’s milk and cheese. Archiv Tierzucht-archiv Anim 49:263–267

    Google Scholar 

  63. Silva RA, Lima MSF, Viana JBM, Bezerra VS, Pimentel MCB, Porto ALF, Cavalcanti MTH, Lima Filho JL (2012) Can artisanal ‘“Coalho”’ cheese from Northeastern Brazil be used as a functional food? Food Chem 135:1533–1538. https://doi.org/10.1016/j.foodchem.2012.06.058

    Article  CAS  PubMed  Google Scholar 

  64. Martin-Hernandez MC, Juarez M (1989) Retention of main and trace elements in four types of goat cheese. J Dairy Sci 72:1092–1097. https://doi.org/10.3168/jds.S0022-0302(89)79209-2

    Article  CAS  Google Scholar 

  65. Levkov V, Trajce Stafilov T, Pacinovski N, Andonovska KB, Mateva N, Gjorgovska N, Eftimova E, Kostadinov T (2017) The content of macro and trace elements in curd and traditional white brined cheese. Vet Zootec 75:36–42. https://www.researchgate.net/publication/316738649.

Download references

Acknowledgements

We especially would like to thank the Animal Science Department at UFRPE for providing all the physical structure and staff necessary for this study.

Funding

The project was supported by the National Council for Scientific and Technological Development (CNPq), Brazilian funding agency CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and Foundation for the Support of Science and Technology of Pernambuco (FACEPE) for the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

B.H. da S. Silva: Investigation, formal analysis, writing—original draft.

R.B. Andrade: Investigation, formal analysis, writing—original draft.

I.J.S. da Silva: Procedures in analytical chemistry, data curation, writing—review and editing.

A.A.A. Silva: Investigation.

C.F. Fonseca: Investigation, formal analysis, writing—original draft.

F.R. Correia: Investigation.

B.G.C. Menezes: Investigation.

E.F. Oliveira Filho: Investigation; writing, original draft; writing, review and editing.

F.F.R. Carvalho: Conceptualization of this study, resources, project administration, formal analysis, investigation, supervision, writing—review and editing.

J.P.I.S. Monnerat: Conceptualization of this study, resources, project administration, formal analysis, investigation, supervision, writing—review and editing.

P.C. Soares: Conceptualization of this study, resources, project administration, formal analysis, investigation, supervision, writing—review and editing.

Corresponding author

Correspondence to Pierre Castro Soares.

Ethics declarations

Ethics Approval

The current research was submitted and approved by the Ethics Committee on the Use of Animals (CEUA), under license number 059/2016, from the Federal Rural University of Pernambuco (UFRPE).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Silva, B.H., de Andrade, R.B., da Silva, I.J.S. et al. Effect of Crude Glycerin in the Feed of Lactating Goats on Concentrations of Essential and Toxic Metals in Serum, Urine, Milk, and Artisanal “Coalho” Cheese. Biol Trace Elem Res 201, 3323–3340 (2023). https://doi.org/10.1007/s12011-022-03414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03414-0

Keywords

Navigation