Skip to main content

Advertisement

Log in

Zinc Deficiency Exacerbates Bisphenol A–Induced Hepatic and Renal Damage: Delineation of Molecular Mechanisms

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) plays an important role in the maintenance of redox status in the biological system. Zn deficiency has been found to be associated with negative effects on the functioning of many organ systems, including hepatic and renal systems. Bisphenol A (BPA) can alter Zn homeostasis and perturb the physiological system by provoking oxidative stress, which can lead to damage of different organs such as reproductive, immune, neuroendocrine, hepatic and renal systems. The present study aims to investigate the toxicity of BPA in Zn deficient condition in the liver and kidney of rat and to correlate its synergistic actions. Zn deficiency was induced by feeding Zn-deficient diet (ZDD), and BPA was administered orally (100 mg/kg/d). Male Sprague–Dawley rats were divided into four groups: NPD + Vehicle (normal feed and water), NPD + BPA (100 mg/kg/d), ZDD + Vehicle (fed with Zn-deficient diet only) and ZDD + BPA (Zn-deficient diet + BPA; 100 mg/kg/d) for 8 weeks. Biochemical, histopathological, TUNEL assay and protein expression profiles were determined to decipher the oxidative damage induced by ZDD and the toxicant BPA. Expression profile of nuclear factor erythroid 2-related factor 2, proliferating cell nuclear antigen, kelch-like ECH-associated protein 1, superoxide dismutase-1, metallothionein and apoptosis incidence showed that ZDD and BPA have a synergistic exacerbation effect on the liver and kidney of rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All the data and materials support their published claims and comply with field standards. Data will be available on demand.

Abbreviations

BPA:

Bisphenol A

ZDD:

Zinc-deficient diet

NPD:

Normal pellet diet

Nrf2:

Nuclear factor erythroid 2-related factor 2

PCNA:

Proliferating cell nuclear antigen

Keap1:

Kelch-like ECH-associated protein 1

MTH:

Metallothionein

SOD:

Superoxide dismutase

GR:

Glutathione reductase

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labelling

References

  1. Hassan ZK, Elobeid MA, Virk P, Omer SA, ElAmin M, Daghestani MH, AlOlayan EM (2012) Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid Med Cell Longev 2012:194829. https://doi.org/10.1155/2012/194829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Wang R, Marwa PW, Petlulu P, Chen X, Zhang H (2019) The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res 176:108575. https://doi.org/10.1016/j.envres.2019.108575

    Article  CAS  PubMed  Google Scholar 

  3. Eweda SM, Newairy ASA, Abdou HM, Gaber AS (2020) Bisphenol A-induced oxidative damage in the hepatic and cardiac tissues of rats: the modulatory role of sesame lignans. Exp Ther Med 19:33–44. https://doi.org/10.3892/etm.2019.8193

    Article  CAS  PubMed  Google Scholar 

  4. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA et al (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 13:612–632. https://doi.org/10.1177/1747493018778713

    Article  PubMed  Google Scholar 

  5. Korkmaz A, Ahbab MA, Kolankaya D, Barlas N (2010) Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem Toxicol 48:2865–2871. https://doi.org/10.1016/j.fct.2010.07.019

    Article  CAS  PubMed  Google Scholar 

  6. Kobroob A, Peerapanyasut W, Chattipakorn N, Wongmekiat O (2018) Damaging effects of bisphenol A on the kidney and the protection by melatonin: emerging evidences from in vivo and in vitro studies. Oxid Med Cell Longev 2018:3082438. https://doi.org/10.1155/2018/3082438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matuszczak E, Komarowska MD, Debek W, Hermanowicz A (2019) The impact of bisphenol A on fertility, reproductive system, and development: a review of the literature. Int J Endocrinol 2019:4068717. https://doi.org/10.1155/2019/4068717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huff J (2001) Carcinogenicity of bisphenol-A in Fischer rats and B6C3F1 mice. Odontology 89:12–20. https://doi.org/10.1007/s10266-001-8179-y

    Article  CAS  PubMed  Google Scholar 

  9. Tiwari D, Vanage G (2013) Mutagenic effect of bisphenol A on adult rat male germ cells and their fertility. Reprod Toxicol 40:60–68. https://doi.org/10.1016/j.reprotox.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  10. Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA (2016) A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 59:167–182. https://doi.org/10.1016/j.reprotox.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  11. Aslanturk A, Uzunhisarcikli M (2020) Protective potential of curcumin or taurine on nephrotoxicity caused by bisphenol A. Environ Sci Pollut Res Int 27:23994–24003. https://doi.org/10.1007/s11356-020-08716-1

    Article  CAS  PubMed  Google Scholar 

  12. Dong Y, Zhang Z, Liu H, Jia L, Qin M, Wang X (2020) Exacerbating lupus nephritis following BPA exposure is associated with abnormal autophagy in MRL/lpr mice. Am J Transl Res 12:649–659

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosch-Panadero E, Mas S, Civantos E, Abaigar P, Camarero V, Ruiz-Priego A, Ortiz A, Egido J, González-Parra E (2018) Bisphenol A is an exogenous toxin that promotes mitochondrial injury and death in tubular cells. Environ Toxicol 33:325–332. https://doi.org/10.1002/tox.22519

    Article  CAS  PubMed  Google Scholar 

  14. Yuan J, Kong Y, Ommati MM, Tang Z, Li H, Li L, Zhao C, Shi Z, Wang J (2019) Bisphenol A-induced apoptosis, oxidative stress and DNA damage in cultured rhesus monkey embryo renal epithelial Marc-145 cells. Chemosphere 234:682–689. https://doi.org/10.1016/j.chemosphere.2019.06.125

    Article  CAS  PubMed  Google Scholar 

  15. Müller SG, Jardim NS, Quines CB, Nogueira CW (2018) Diphenyl diselenide regulates Nrf2/Keap-1 signaling pathway and counteracts hepatic oxidative stress induced by bisphenol A in male mice. Environ Res 164:280–287. https://doi.org/10.1016/j.envres.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  16. Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28:257–265. https://doi.org/10.1080/07315724.2009.10719780

    Article  CAS  PubMed  Google Scholar 

  17. Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7:31–52. https://doi.org/10.1007/s11684-013-0251-9

    Article  PubMed  Google Scholar 

  18. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr 2:134–141. https://doi.org/10.1016/j.aninu.2016.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stamoulis I, Kouraklis G, Theocharis S (2007) Zinc and the liver: an active interaction. Dig Dis Sci 52:1595–1612. https://doi.org/10.1007/s10620-006-9462-0

    Article  CAS  PubMed  Google Scholar 

  20. Sun Q, Zhong W, Zhang W, Li Q, Sun X, Tan X, Sun X, Dong D, Zhou Z (2015) Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways. Am J Physiol Gastrointest Liver Physiol 308:G757-766. https://doi.org/10.1152/ajpgi.00442.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Himoto T, Nomura T, Tani J, Miyoshi H, Morishita A, Yoneyama H, Haba R, Masugata H, Masaki T (2015) Exacerbation of insulin resistance and hepatic steatosis deriving from zinc deficiency in patients with HCV-related chronic liver disease. Biol Trace Elem Res 163:81–88. https://doi.org/10.1007/s12011-014-0177-3

    Article  CAS  PubMed  Google Scholar 

  22. Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR (2017) NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol 312:C47-c55. https://doi.org/10.1152/ajpcell.00208.2016

    Article  PubMed  Google Scholar 

  23. Kaufman Z, Salvador GA, Liu X, Oteiza PI (2020) Zinc and the modulation of Nrf2 in human neuroblastoma cells. Free Radic Biol Med 155:1–9. https://doi.org/10.1016/j.freeradbiomed.2020.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Rossi L, Migliaccio S, Corsi A, Marzia M, Bianco P, Teti A, Gambelli L, Cianfarani S, Paoletti F, Branca F (2001) Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. J Nutr 131:1142–1146. https://doi.org/10.1093/jn/131.4.1142

    Article  CAS  PubMed  Google Scholar 

  25. Taysi S, Cikman O, Kaya A, Demircan B, Gumustekin K, Yilmaz A, Boyuk A, Keles M, Akyuz M, Turkeli M (2008) Increased oxidant stress and decreased antioxidant status in erythrocytes of rats fed with zinc-deficient diet. Biol Trace Elem Res 123:161–167. https://doi.org/10.1007/s12011-008-8095-x

    Article  CAS  PubMed  Google Scholar 

  26. Kojima-Yuasa A, Kamatani K, Tabuchi M, Akahoshi Y, Kennedy DO, Matsui-Yuasa I (2011) Zinc deficiency enhances sensitivity to carbon tetrachloride-induced hepatotoxicity in rats. J Trace Elem Med Biol 25:103–108. https://doi.org/10.1016/j.jtemb.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  27. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  28. Sedlák J, L H, (1982) Changes of glutathione and protein bound SH-groups concentration in rat adrenals under acute and repeated stress. Endocrinol Exp 16:103–109

    PubMed  Google Scholar 

  29. Roberts JC, Francetic DJ (1993) The importance of sample preparation and storage in glutathione analysis. Anal Biochem 211:183–187. https://doi.org/10.1006/abio.1993.1254

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Z, Guo R, Li Y, Li S, Tu P (2020) Comparison of three analytical methods for superoxide produced by activated immune cells. J Pharmacol Toxicol Methods 101:106637. https://doi.org/10.1016/j.vascn.2019.106637

    Article  CAS  PubMed  Google Scholar 

  31. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195. https://doi.org/10.1016/0003-9861(78)90479-4

    Article  CAS  PubMed  Google Scholar 

  32. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. https://doi.org/10.1016/s0076-6879(85)13062-4

    Article  CAS  PubMed  Google Scholar 

  33. Trivedi PP, Jena GB (2013) Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem Toxicol 59:339–355. https://doi.org/10.1016/j.fct.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  34. Zambaiti E, Scottoni F, Rizzi E, Russo S, Deguchi K, Eaton S, Pellegata AF, De Coppi P (2019) Whole rat stomach decellularisation using a detergent-enzymatic protocol. Pediatr Surg Int 35:21–27. https://doi.org/10.1007/s00383-018-4372-8

    Article  PubMed  Google Scholar 

  35. Maremanda KP, Jena GB (2017) Methotrexate-induced germ cell toxicity and the important role of zinc and SOD1: investigation of molecular mechanisms. Biochem Biophys Res Commun 483:596–601. https://doi.org/10.1016/j.bbrc.2016.12.098

    Article  CAS  PubMed  Google Scholar 

  36. Maremanda KP, Khan S, Jena GB (2016) Role of zinc supplementation in testicular and epididymal damages in diabetic rat: involvement of Nrf2, SOD1, and GPX5. Biol Trace Elem Res 173:452–464. https://doi.org/10.1007/s12011-016-0674-7

    Article  CAS  PubMed  Google Scholar 

  37. Kurien BT, Scofield RH (2015) Western blotting: an introduction. Methods Mol Biol 1312:17–30. https://doi.org/10.1007/978-1-4939-2694-7_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ali Z, Bhaskar SB (2016) Basic statistical tools in research and data analysis. Indian J Anaesth 60:662–669. https://doi.org/10.4103/0019-5049.190623

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kataria A, Trasande L, Trachtman H (2015) The effects of environmental chemicals on renal function. Nat Rev Nephrol 11:610–625. https://doi.org/10.1038/nrneph.2015.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang WJ, Joe KT, Park HY, Jeong JD, Lee DH (2013) The relationship of liver function tests to mixed exposure to lead and organic solvents. Ann Occup Environ Med 25:5. https://doi.org/10.1186/2052-4374-25-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gassman NR (2017) Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen 58:60–71. https://doi.org/10.1002/em.22072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pirozzi C, Lama A, Annunziata C, Cavaliere G, Ruiz-Fernandez C, Monnolo A, Comella F, Gualillo O, Stornaiuolo M, Mollica MP et al (2020) Oral bisphenol A worsens liver immune-metabolic and mitochondrial dysfunction induced by high-fat diet in adult mice: cross-talk between oxidative stress and inflammasome pathway. Antioxidants (Basel) 9:1201. https://doi.org/10.3390/antiox9121201

    Article  CAS  PubMed  Google Scholar 

  43. Kumari D, Nair N, Bedwal RS (2011) Effect of dietary zinc deficiency on testes of Wistar rats: morphometric and cell quantification studies. J Trace Elem Med Biol 25:47–53. https://doi.org/10.1016/j.jtemb.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  44. Gao HT, Di QN, Qian LL, Lu L, Li RX, Cao WX, Xu Q (2020) Zinc supplement ameliorates phthalates-induced reproductive toxicity in male rats. Chemosphere 246:125828. https://doi.org/10.1016/j.chemosphere.2020.125828

    Article  CAS  PubMed  Google Scholar 

  45. Madej D, Pietruszka B, Kaluza J (2021) The effect of iron and/or zinc diet supplementation and termination of this practice on the antioxidant status of the reproductive tissues and sperm viability in rats. J Trace Elem Med Biol 64:126689. https://doi.org/10.1016/j.jtemb.2020.126689

    Article  CAS  PubMed  Google Scholar 

  46. Kourouma A, Quan C, Duan P, Qi S, Yu T, Wang Y, Yang K (2015) Bisphenol A oxidative stress oxidative stress of ROS. Advances in Toxicology 2015:901983. https://doi.org/10.1155/2015/901983

    Article  Google Scholar 

  47. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5:a012559. https://doi.org/10.1101/cshperspect.a012559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maremanda KP, Khan S, Jena G (2014) Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Commun 445:591–596. https://doi.org/10.1016/j.bbrc.2014.02.055

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Liu Y, Habeebu SS, Klaassen CD (1998) Metallothionein (MT)-null mice are sensitive to cisplatin-induced hepatotoxicity. Toxicol Appl Pharmacol 149:24–31. https://doi.org/10.1006/taap.1997.8325

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Huang Y, Piao Y, Nagaoka K, Watanabe G, Taya K, Li C (2013) Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis. Reprod Biol Endocrinol 11:23. https://doi.org/10.1186/1477-7827-11-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cortese MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V (2008) Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 44:2002–2012. https://doi.org/10.1016/j.freeradbiomed.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  52. Oh YS, Jun HS (2017) Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int J Mol Sci 19:26. https://doi.org/10.3390/ijms19010026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865:721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  54. Tu W, Wang H, Li S, Liu Q, Sha H (2019) The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis 10:637–651. https://doi.org/10.14336/ad.2018.0513

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gao L, Fan Y, Zhang X, Yang L, Huang W, Hang T, Li M, Du S, Ma J (2019) Zinc supplementation inhibits the high glucose-induced EMT of peritoneal mesothelial cells by activating the Nrf2 antioxidant pathway. Mol Med Rep 20:655–663. https://doi.org/10.3892/mmr.2019.10260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chiang YW, Su CH, Sun HY, Chen SP, Chen CJ, Chen WY, Chang CC, Chen CM, Kuan YH (2022) Bisphenol A induced apoptosis via oxidative stress generation involved Nrf2/HO-1 pathway and mitochondrial dependent pathways in human retinal pigment epithelium (ARPE-19) cells. Environ Toxicol 37:131–141. https://doi.org/10.1002/tox.23384

    Article  CAS  PubMed  Google Scholar 

  57. Almeida S, Raposo A, Almeida-González M, Carrascosa C (2018) Bisphenol A: food exposure and impact on human health. Compr Rev Food Sci Food Saf 17:1503–1517. https://doi.org/10.1111/1541-4337.12388

    Article  PubMed  Google Scholar 

Download references

Funding

Financial assistance from the National Institute of Pharmaceutical Education and Research, S.A.S Nagar was provided to undertake the present study. Also, the Department of Science and Technology, Science and Engineering Research Board (DST‐SERB EMR/2015/001212/HS), Government of India provided financial assistance to carry out the present study.

Author information

Authors and Affiliations

Authors

Contributions

Aarzoo Charaya, Chittaranjan Sahu and Shivani Singla conceived, performed the experiments, analysed the data and Aarzoo Charaya and Shivani Singla wrote all the sections of the manuscript. G. B. Jena reviewed and proof-read the manuscript. Finally, all the authors approved the manuscript.

Corresponding author

Correspondence to Gopabandhu Jena.

Ethics declarations

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed. The animal studies were approved by the Animal Ethics Committee of the NIPER S.A.S Nagar (IAEC/16/52).

Informed Consent

Informed consent is not applicable in the present study.

Consent to Participate

It is not applicable in the present research.

Consent for Publication

All the authors are willing to publish their research work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12011_2022_3392_MOESM1_ESM.jpg

Supplementary file1 (JPG 2383 KB) Supplementary Fig. 1. Effect of ZDD and BPA on (A) line graph of feed intake at different time points; (B) line graph of water intake at different time points. All values are shown as mean ± SEM (n=5)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charaya, A., Sahu, C., Singla, S. et al. Zinc Deficiency Exacerbates Bisphenol A–Induced Hepatic and Renal Damage: Delineation of Molecular Mechanisms. Biol Trace Elem Res 201, 2879–2894 (2023). https://doi.org/10.1007/s12011-022-03392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03392-3

Keywords

Navigation