Skip to main content
Log in

Serum Essential Trace Element Status in Women and the Risk of Endometrial Diseases: a Case–Control Study

Serum Essential Trace Element Status in Women and the Risk of Endometrial Diseases: a Case–Control Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Endometrial diseases, including uterine fibroids, polyps, intrauterine adhesion, endometritis, etc., are the major causes of infertility among women. However, the association between essential trace element status in women and the risk of endometrial disease is limited and unclear. This study aimed to investigate this association using a case–control study design; a total of 302 women patients with endometrial diseases and 302 healthy women were included. Compared to women in the control group, serum selenium (Se) (p = 0.024) and zinc (Zn) (p = 0.017) levels were significantly lower, while copper (Cu) (p = 0.004) and molybdenum (Mo) (p = 0.005) levels were significantly higher among women with endometrial diseases. In addition, compared to women in the first quartile of the copper/zinc (Cu/Zn) ratio value group, the adjusted ORs (95% CIs) of endometrial diseases were 1.50 (1.05, 2.14), 1.68 (1.18, 2.39), and 1.47 (1.02, 2.10), respectively, in the second, third, and fourth quartile of the Cu/Zn ratio value group (p trend = 0.047). In addition, the results from restricted cubic splines showed that the dose–response relationships of serum levels of these essential elements with the risk of endometrial diseases were nonlinear for Se, Cu, and Zn and relatively linear for Mo and Cu/Zn ratio. The present study showed serum levels of Zn and Se among women with endometrial diseases were significantly lower compared to that among healthy women, while serum levels of Cu and Mo were significantly higher, in addition, the serum Cu/Zn ratio value was also significantly and positively associated with the risk of endometrial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data underlying this article will be shared upon reasonable request to the corresponding author.

Code Availability

Not applicable.

References

  1. Munro MG (2019) Uterine polyps, adenomyosis, leiomyomas, and endometrial receptivity. Fertil Steril 111:629–640

    Article  PubMed  Google Scholar 

  2. Salim S, Won H, Nesbitt-Hawes E, Campbell N, Abbott J (2011) Diagnosis and management of endometrial polyps: a critical review of the literature. J Minim Invasive Gynecol 18:569–581

    Article  CAS  PubMed  Google Scholar 

  3. Grimbizis GF, Di Spiezio SA, Campo R (2021) Pregnancy-related intrauterine adhesion treatment: new insights. Fertil Steril 116:1188

    Article  PubMed  Google Scholar 

  4. Kimura F, Takebayashi A, Ishida M, Nakamura A, Kitazawa J, Morimune A et al (2019) Review: chronic endometritis and its effect on reproduction. J Obstet Gynaecol Res 45:951–960

    Article  PubMed  Google Scholar 

  5. Giuliani E, As-Sanie S, Marsh EE (2020) Epidemiology and management of uterine fibroids. Int J Gynaecol Obstet 149:3–9

    Article  PubMed  Google Scholar 

  6. Ravel J, Moreno I, Simon C (2021) Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am J Obstet Gynecol 224:251–257

    Article  CAS  PubMed  Google Scholar 

  7. Hart RJ (2016) Physiological aspects of female fertility: role of the environment, modern lifestyle, and genetics. Physiol Rev 96:873–909

    Article  CAS  PubMed  Google Scholar 

  8. Bicalho ML, Lima FS, Ganda EK, Foditsch C, Meira EB Jr, Machado VS et al (2014) Effect of trace mineral supplementation on selected minerals, energy metabolites, oxidative stress, and immune parameters and its association with uterine diseases in dairy cattle. J Dairy Sci 97:4281–4295

    Article  CAS  PubMed  Google Scholar 

  9. Nayki C, Nayki U, Gunay M, Kulhan M, Cankaya M, HumeyraTaskinKafa A et al (2017) Oxidative and antioxidative status in the endometrium of patients with benign gynecological disorders. J Gynecol Obstet Hum Reprod 46:243–7

    Article  CAS  PubMed  Google Scholar 

  10. Santulli P, Borghese B, Lemarechal H, Leconte M, Millischer AE, Batteux F et al (2013) Increased serum oxidative stress markers in women with uterine leiomyoma. PLoS ONE 8:e72069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tok A, Ozer A, Baylan FA, Kurutas EB (2021) Copper/zinc ratio can be a marker to diagnose ectopic pregnancy and is associated with the oxidative stress status of ectopic pregnancy cases. Biol Trace Elem Res 199:2096–2103

    Article  CAS  PubMed  Google Scholar 

  12. Bedwal RSBA (1994) Zinc, copper and selenium in reproduction. Experientia 50:626–640

    Article  CAS  PubMed  Google Scholar 

  13. Ren M, Zhao J, Wang B, An H, Li Y, Jia X et al (2022) Associations between hair levels of trace elements and the risk of preterm birth among pregnant women: a prospective nested case-control study in Beijing Birth Cohort (BBC). China Environ Int 158:106965

    Article  CAS  PubMed  Google Scholar 

  14. Adeniran SO, Zheng P, Feng R, Adegoke EO, Huang F, Ma M et al (2022) The antioxidant role of selenium via GPx1 and GPx4 in LPS-induced oxidative stress in bovine endometrial cells. Biol Trace Elem 200(3):1140–1155

  15. Carrascosa JP, Cotan D, Jurado I, Oropesa-Avila M, Sanchez-Martin P, Savaris RF et al (2018) The effect of copper on endometrial receptivity and induction of apoptosis on decidualized human endometrial stromal cells. Reprod Sci 25:985–999

    Article  CAS  PubMed  Google Scholar 

  16. Atakul T, Altinkaya SO, Abas BI, Yenisey C (2020) Serum copper and zinc levels in patients with endometrial cancer. Biol Trace Elem Res 195:46–54

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y, Wang W, Guo Y, Zheng B, Li H, Chen J et al (2019) High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: population-based and in vitro studies. Toxicol Appl Pharmacol 365:101–111

    Article  CAS  PubMed  Google Scholar 

  18. Osuchowska-Grochowska I, Blicharska E, Gogacz M, Nogalska A, Winkler I, Szopa A et al (2021) Brief review of endometriosis and the role of trace elements. Int J Mol Sci 22(20):11098

  19. Malavolta M, Piacenza F, Basso A, Giacconi R, Costarelli L, Mocchegiani E (2015) Serum copper to zinc ratio: relationship with aging and health status. Mech Ageing Dev 151:93–100

    Article  CAS  PubMed  Google Scholar 

  20. Socha K, Karpinska E, Kochanowicz J, Soroczynska J, Jakoniuk M, Wilkiel M et al (2017) Dietary habits; concentration of copper, zinc, and Cu-to-Zn ratio in serum and ability status of patients with relapsing-remitting multiple sclerosis. Nutrition 39–40:76–81

    Article  PubMed  Google Scholar 

  21. Novotny JA, Peterson CA (2018) Molybdenum Adv Nutr 9:272–273

    Article  PubMed  Google Scholar 

  22. Zhao H, Wu W, Zhang X, Zhu Q, Tang J, He H et al (2021) Associations between molybdenum exposure and ultrasound measures of fetal growth parameters: a pilot study. Chemosphere 269:128709

    Article  CAS  PubMed  Google Scholar 

  23. Liang C, Wang J, Xia X, Wang Q, Li Z, Tao R et al (2018) Serum cobalt status during pregnancy and the risks of pregnancy-induced hypertension syndrome: a prospective birth cohort study. J Trace Elem Med Biol 46:39–45

    Article  CAS  PubMed  Google Scholar 

  24. Yilmaz BK, Evliyaoglu O, Yorganci A, Ozyer S, Ustun YE (2020) Serum concentrations of heavy metals in women with endometrial polyps. J Obstet Gynaecol 40:541–545

    Article  CAS  PubMed  Google Scholar 

  25. Choi R, Kim MJ, Sohn I, Kim S, Kim I, Ryu JM et al (2018) Serum trace elements and their associations with breast cancer subgroups in Korean breast cancer patients. Nutrients 11(1):37

  26. Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxid Med Cell Longev 2017:7478523

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharma P, Gupta V, Kumar K, Khetarpal P (2022) Assessment of serum elements concentration and polycystic ovary syndrome (PCOS): systematic review and meta-analysis. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-03058-6

  28. Mistry HD, Broughton Pipkin F, Redman CW, Poston L (2012) Selenium in reproductive health. Am J Obstet Gynecol 206:21–30

    Article  CAS  PubMed  Google Scholar 

  29. Sami AS, Suat E, Alkis I, Karakus Y, Guler S (2021) The role of trace element, mineral, vitamin and total antioxidant status in women with habitual abortion. J Matern Fetal Neonatal Med 34:1055–1062

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Huang P, Gao F, Xiao X, Li L (2021) Selenium ameliorates aflatoxin B1-induced uterine injury in female mice and necrosis of human endometrial microvascular endothelial cells. J Appl Toxicol 41:799–810

    Article  CAS  PubMed  Google Scholar 

  31. Hadrup N, Ravn-Haren G (2020) Acute human toxicity and mortality after selenium ingestion: a review. J Trace Elem Med Biol 58:126435

    Article  CAS  PubMed  Google Scholar 

  32. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036

  33. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A, Khan MA, Alrokayan SA (2015) Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells. J Colloid Interface Sci 457:370–377

    Article  CAS  PubMed  Google Scholar 

  34. Niehoff NM, O’Brien KM, Keil AP, Levine KE, Liyanapatirana C, Haines LG et al (2021) Metals and breast cancer risk: a prospective study using toenail biomarkers. Am J Epidemiol 190:2360–2373

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhuang Y, Liu P, Wang L, Luo J, Zhang C, Guo X et al (2016) Mitochondrial oxidative stress-induced hepatocyte apoptosis reflects increased molybdenum intake in caprine. Biol Trace Elem Res 170:106–114

    Article  CAS  PubMed  Google Scholar 

  36. Feng J, Chen J, Xing C, Huang A, Zhuang Y, Yang F et al (2020) Molybdenum induces mitochondrial oxidative damage in kidney of goats. Biol Trace Elem Res 197:167–174

    Article  CAS  PubMed  Google Scholar 

  37. Roychoudhury SDL, Sirotkin AV, Toman R, Kolesarova A (2014) In vitro changes in secretion activity of rat ovarian fragments induced by molybdenum. Physiol Res 63:807–809

    Article  CAS  PubMed  Google Scholar 

  38. Ashrap P, Sanchez BN, Tellez-Rojo MM, Basu N, Tamayo-Ortiz M, Peterson KE et al (2019) In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City. Environ Res 177:108630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nasiadek M, Stragierowicz J, Klimczak M, Kilanowicz A (2020) The role of zinc in selected female reproductive system disorders. Nutrients 12(8):2464

  40. Lu XZQ, Xu L et al (2020) Zinc is essential for the transcription function of the PGC-1α/Nrf2 signaling pathway in human primary endometrial stromal cells. Am J Physiol Cell Physiol 318:C640–C648

    Article  PubMed  Google Scholar 

  41. Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M et al (2003) Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 144:2425–2436

    Article  CAS  PubMed  Google Scholar 

  42. DA Gibson SI, Collins F, Saunders PTK (2020) Androgens, oestrogens and endometrium: a fine balance between perfection and pathology. J Endocrinol 246:R75–R93

    Article  CAS  PubMed  Google Scholar 

  43. Kossai M, Penault-Llorca F (2020) Role of hormones in common benign uterine lesions: endometrial polyps, leiomyomas, and adenomyosis. Adv Exp Med Biol 1242:37–58

    Article  CAS  PubMed  Google Scholar 

  44. Chou CH, Chen SU, Shun CT, Tsao PN, Yang YS, Yang JH (2015) Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device. Sci Rep 5:15157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perez-Deben S, Gonzalez-Martin R, Palomar A, Quinonero A, Salsano S, Dominguez F (2020) Copper and lead exposures disturb reproductive features of primary endometrial stromal and epithelial cells. Reprod Toxicol 93:106–117

    Article  CAS  PubMed  Google Scholar 

  46. Çınar M, Eryılmaz ÖG, Özel Ş, Fındık RB, Kansu H, Özakşit G (2016) The role of oxidative stress markers in development of endometrial polyp. J Exp Ther Oncol 11(4):269–273

  47. Matsubayashi H, Kitaya K, Yamaguchi K, Nishiyama R, Takaya Y, Ishikawa T (2017) Is a high serum copper concentration a risk factor for implantation failure? BMC Res Notes 10:387

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the medical staff in the First Afflicted Hospital of Anhui Medical University in Anhui, China, for recruiting subjects and collecting specimens. The authors are grateful to the Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University for the technical support in our experiment.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC-U20A20350, NSFC-82173532, NSFC-81971455, NSFC-81871216, and NSFC-81601345), Postdoctoral Research Foundation of China (2021M700181), Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyq2021173), and the Provincial Natural Science Foundation of Anhui (1908085MH244).

Author information

Authors and Affiliations

Authors

Contributions

D.M.J. and X.F.X. designed the experiments. D.Y.L., T.T.J., and X.W. experimented and wrote the manuscript. Z.K.Z. and L.C.S. analyzed the statistical data. T.Y. collected samples. W.W.Z. and K.Z. collated patients’ data. Y.J.L. and D.L. reviewed the data statistics. Y.X.C. and C.M.L. revised the manuscript.

Corresponding authors

Correspondence to Xiaofeng Xu, Chunmei Liang or Dongmei Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

This study was approved by the Biomedical Ethics Committee of Anhui Medical University (20160270).

Consent to Participate

All participants signed an informed consent form for the use of the samples.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Danyang Li, Tingting Jiang, and Xin Wang are the equal first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 301 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Jiang, T., Wang, X. et al. Serum Essential Trace Element Status in Women and the Risk of Endometrial Diseases: a Case–Control Study. Biol Trace Elem Res 201, 2151–2161 (2023). https://doi.org/10.1007/s12011-022-03328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03328-x

Keywords

Navigation