Skip to main content
Log in

Prenatal Exposure to Potentially Toxic Metals and Their Effects on Genetic Material in Offspring: a Systematic Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In recent years, the background level of environmental pollutants, including metals, has increased. Pollutant exposure during the earliest stages of life may determine chronic disease susceptibility in adulthood because of genetic or epigenetic changes. The objective of this review was to identify the association between prenatal and early postnatal exposure to potentially toxic metals (PTMs) and their adverse effects on the genetic material of offspring. A systematic review was carried out following the Cochrane methodology in four databases: PubMed, Scopus, Web of Science, and the Cochrane Library. Eligible papers were those conducted in humans and published in English between 2010/01/01 and 2021/04/30. A total of 57 articles were included, most of which evaluated prenatal exposure. Most commonly evaluated PTMs were As, Cd, and Pb. Main adverse effects on the genetic material of newborns associated with PTM prenatal exposure were alterations in telomere length, gene or protein expression, mitochondrial DNA content, metabolomics, DNA damage, and epigenetic modifications. Many of these effects were sex-specific, being predominant in boys. One article reported a synergistic interaction between As and Hg, and two articles observed antagonistic interactions between PTMs and essential metals, such as Cu, Se, and Zn. The findings in this review highlight that the problem of PTM exposure persists, affecting the most susceptible populations, such as newborns. Some of these associations were observed at low concentrations of PTMs. Most of the studies have focused on single exposures; however, three interactions between essential and nonessential metals were observed, highlighting that metal mixtures need more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data taken from the articles revised are included in the review.

Abbreviations

5mC:

5-Methylcytosine

8-OHdG:

8-Hydroxy-2-deoxy-guanosine

8-oxoG:

8-Oxoguanine

BE:

Biomonitoring equivalent

CBMN:

Cytokinesis-block micronucleus cytome

FOAD:

Fetal origins of adult disease

DNMTs:

DNA methyltransferases

DMR:

Differentially methylated regions

MeSH:

Medical Subject Headings

MMAT:

Mixed Methods Appraisal Tools

mtDNA:

Mitochondrial DNA

PRISMA:

Preferred Reporting Items for Systematic reviews and Meta-Analyses

PTMs :

Potentially toxic metals

ROS:

Reactive oxygen species

TL:

Telomere length

WHO:

World Health Organization

References

  1. Muralikrishna IV, Manickam V (2017) Chapter one - introduction. In: Muralikrishna IV, Manickam V (eds) Environmental Management. Butterworth-Heinemann, pp 1–4

    Google Scholar 

  2. World Health Organization (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization, Geneva

    Google Scholar 

  3. United Nations Children’s Fund, World Health Organization (2020) State of the World’s Sanitation: an urgent call to transform sanitation for better health, environments, economies and societies. New York

  4. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691–e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tokar E, Boyd W, Freedman J, Waalkes M (2013) Toxic effects of metals. In: Klaassen C (ed) Casarett & Doull’s Toxicology The Basic Science of Poisons. McGraw-Hill, Eighth Edi, pp 982–1030

    Google Scholar 

  6. Ali J, Khan S, Khan A et al (2020) Contamination of soil with potentially toxic metals and their bioaccumulation in wheat and associated health risk. Environ Monit Assess 192:138–138. https://doi.org/10.1007/s10661-020-8096-6

    Article  CAS  PubMed  Google Scholar 

  7. Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231. https://doi.org/10.1016/j.jtemb.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  8. Tsuji PA, Canter JA, Rosso LE (2016) Trace minerals and trace elements. In: Encyclopedia of Food and Health, 1st ed. Elsevier, pp 331–338

  9. Hulla J (2014) Metals. In: Hayes W, Kruger C (eds) Hayes’ principles and methods of toxicology, Sixth Edit. CRC Press, Boca Raton, pp 830–873

    Google Scholar 

  10. Agency for Toxic Substances and Disease Registry (2020) ATSDR’s substance priority list. https://www.atsdr.cdc.gov/spl/index.html. Accessed 28 Oct 2021

  11. Kopp B, Zalko D, Audebert M (2018) Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines. Environ Mol Mutagen 59:202–210. https://doi.org/10.1002/em.22157

    Article  CAS  PubMed  Google Scholar 

  12. Caito S, Costa LG, Aschner M (2014) Toxicology of metals. In: Reference Module in Biomedical Sciences, Third Edit. Elsevier, pp 684–685

  13. Rager JE, Bangma J, Carberry C, et al (2020) Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reprod Toxicol 0–1. https://doi.org/10.1016/j.reprotox.2020.02.004

  14. Syed BM (2020) Prenatal metal exposure and child health. In: Xia Y (ed) Early-life Environmental Exposure and Disease. Springer Singapore, Singapore, pp 67–87

  15. World Health Organization (2010) WHO technical consultation on postpartum and postnatal care. World Health Organization, Geneva

    Google Scholar 

  16. van de Bor M (2019) Chapter 2 - fetal toxicology. In: de Vries LS, Glass HCBT-H of CN (eds) Neonatal Neurology. Elsevier, pp 31–55

  17. Young JL, Cai L, States JC (2018) Impact of prenatal arsenic exposure on chronic adult diseases. Syst Biol Reprod Med 64:469–483. https://doi.org/10.1080/19396368.2018.1480076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ashrap P, Sánchez BN, Téllez-Rojo MM et al (2019) In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City. Environ Res 177:108630–108630. https://doi.org/10.1016/j.envres.2019.108630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barker D, Eriksson J, Forsén T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31:1235–1239. https://doi.org/10.1093/ije/31.6.1235

    Article  CAS  PubMed  Google Scholar 

  20. Dolinoy DC, Das R, Weidman JR, Jirtle RL (2007) Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res 61:30R-37R. https://doi.org/10.1203/pdr.0b013e31804575f7

    Article  PubMed  Google Scholar 

  21. Higgins J, Thomas J, Chandler J, et al (2021) Cochrane Handbook for Systematic Reviews of Interventions version 6.2. Cochrane

  22. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71–n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hong QN, Fàbregues S, Bartlett G et al (2018) The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Educ Inf 34:285–291. https://doi.org/10.3233/EFI-180221

    Article  Google Scholar 

  24. Wu M, Wang L, Song L et al (2021) The association between prenatal exposure to thallium and shortened telomere length of newborns. Chemosphere 265:129025–129025. https://doi.org/10.1016/j.chemosphere.2020.129025

    Article  CAS  PubMed  Google Scholar 

  25. Cowell W, Colicino E, Tanner E et al (2020) Prenatal toxic metal mixture exposure and newborn telomere length: modification by maternal antioxidant intake. Environ Res 190:110009–110009. https://doi.org/10.1016/j.envres.2020.110009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wai KM, Umezaki M, Kosaka S et al (2018) Impact of prenatal heavy metal exposure on newborn leucocyte telomere length: a birth-cohort study. Environ Pollut 243:1414–1421. https://doi.org/10.1016/j.envpol.2018.09.090

    Article  CAS  PubMed  Google Scholar 

  27. Wai KM, Umezaki M, Umemura M et al (2020) Protective role of selenium in the shortening of telomere length in newborns induced by in utero heavy metal exposure. Environ Res 183:109202–109202. https://doi.org/10.1016/j.envres.2020.109202

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Song L, Liu B et al (2019) Prenatal cadmium exposure is associated with shorter leukocyte telomere length in Chinese newborns. BMC Med 17:27–27. https://doi.org/10.1186/s12916-019-1262-4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Herlin M, Broberg K, Igra AM et al (2019) Exploring telomere length in mother–newborn pairs in relation to exposure to multiple toxic metals and potential modifying effects by nutritional factors. BMC Med 17:77–77. https://doi.org/10.1186/s12916-019-1309-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin S, Huo X, Zhang Q et al (2013) Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. PLoS ONE 8:e60815–e60815. https://doi.org/10.1371/journal.pone.0060815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Navasumrit P, Chaisatra K, Promvijit J et al (2019) Correction to: exposure to arsenic in utero is associated with various types of DNA damage and micronuclei in newborns: a birth cohort study. Environ Health 18:68–68. https://doi.org/10.1186/s12940-019-0504-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Al-Saleh I, Al-Rouqi R, Obsum CA et al (2014) Mercury (Hg) and oxidative stress status in healthy mothers and its effect on birth anthropometric measures. Int J Hyg Environ Health 217:567–585. https://doi.org/10.1016/j.ijheh.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  33. Ni W, Huang Y, Wang X et al (2014) Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town. Sci Total Environ 472:354–362. https://doi.org/10.1016/j.scitotenv.2013.11.032

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed S, Khoda SM, Rekha RS et al (2011) Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect 119:258–264. https://doi.org/10.1289/ehp.1002086

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Wahlberg K, Love TM et al (2019) Associations of blood mercury and fatty acid concentrations with blood mitochondrial DNA copy number in the Seychelles Child Development Nutrition Study. Environ Int 124:278–283. https://doi.org/10.1016/j.envint.2019.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanchez-Guerra M, Peng C, Trevisi L et al (2019) Altered cord blood mitochondrial DNA content and pregnancy lead exposure in the PROGRESS cohort. Environ Int 125:437–444. https://doi.org/10.1016/j.envint.2019.01.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu B, Song L, Zhang L et al (2019) Prenatal aluminum exposure is associated with increased newborn mitochondrial DNA copy number. Environ Pollut 252:330–335. https://doi.org/10.1016/j.envpol.2019.05.116

    Article  CAS  PubMed  Google Scholar 

  38. Wu M, Shu Y, Song L et al (2019) Prenatal exposure to thallium is associated with decreased mitochondrial DNA copy number in newborns: evidence from a birth cohort study. Environ Int 129:470–477. https://doi.org/10.1016/j.envint.2019.05.053

    Article  CAS  PubMed  Google Scholar 

  39. Kupsco A, Sanchez-Guerra M, Amarasiriwardena C et al (2019) Prenatal manganese and cord blood mitochondrial DNA copy number: effect modification by maternal anemic status. Environ Int 126:484–493. https://doi.org/10.1016/j.envint.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vriens A, Nawrot TS, Baeyens W et al (2017) Neonatal exposure to environmental pollutants and placental mitochondrial DNA content: a multi-pollutant approach. Environ Int 106:60–68. https://doi.org/10.1016/j.envint.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  41. Wang J-Q, Hu Y-B, Liang C-M et al (2020) Aluminum and magnesium status during pregnancy and placenta oxidative stress and inflammatory mRNA expression: China Ma’anshan birth cohort study. Environ Geochem Health 42:3887–3898. https://doi.org/10.1007/s10653-020-00619-x

    Article  CAS  PubMed  Google Scholar 

  42. Everson TM, Marable C, Deyssenroth MA et al (2019) Placental expression of imprinted genes, overall and in sex-specific patterns, associated with placental cadmium concentrations and birth size. Environ Health Perspect 127:057005–057005. https://doi.org/10.1289/EHP4264

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deyssenroth MA, Gennings C, Liu SH et al (2018) Intrauterine multi-metal exposure is associated with reduced fetal growth through modulation of the placental gene network. Environ Int 120:373–381. https://doi.org/10.1016/j.envint.2018.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Everson TM, Kappil M, Hao K et al (2017) Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. Environ Res 158:233–244. https://doi.org/10.1016/j.envres.2017.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu X, Chiung YM, Lu F et al (2015) Associations of cadmium, bisphenol A and polychlorinated biphenyl co-exposure in utero with placental gene expression and neonatal outcomes. Reprod Toxicol 52:62–70. https://doi.org/10.1016/j.reprotox.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  46. Nadeau KC, Li Z, Farzan S et al (2014) In utero arsenic exposure and fetal immune repertoire in a US pregnancy cohort. Clin Immunol 155:188–197. https://doi.org/10.1016/j.clim.2014.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Remy S, Govarts E, Bruckers L et al (2014) Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight. PLoS ONE 9:e92677–e92677. https://doi.org/10.1371/journal.pone.0092677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Everson TM, Armstrong DA, Jackson BP et al (2016) Maternal cadmium, placental PCDHAC1, and fetal development. Reprod Toxicol 65:263–271. https://doi.org/10.1016/j.reprotox.2016.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bailey KA, Laine J, Rager JE et al (2014) Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci 139:328–337. https://doi.org/10.1093/toxsci/kfu053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laine JE, Bailey KA, Olshan AF et al (2017) Neonatal metabolomic profiles related to prenatal arsenic exposure. Environ Sci Technol 51:625–633. https://doi.org/10.1021/acs.est.6b04374

    Article  CAS  PubMed  Google Scholar 

  51. Weyde KVF, Olsen A-K, Duale N et al (2021) Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. Sci Total Environ 787:147621–147621. https://doi.org/10.1016/j.scitotenv.2021.147621

    Article  CAS  PubMed  Google Scholar 

  52. Yang W, Guo Y, Ni W et al (2021) Hypermethylation of WNT3A gene and non-syndromic cleft lip and/or palate in association with in utero exposure to lead: a mediation analysis. Ecotoxicol Environ Saf 208:111415–111415. https://doi.org/10.1016/j.ecoenv.2020.111415

    Article  CAS  PubMed  Google Scholar 

  53. Park J, Kim J, Kim E, et al (2021) Prenatal lead exposure and cord blood DNA methylation in the Korean Exposome Study. Environ Res 195:110767–110767. Kenne

  54. Kennedy E, Everson TM, Punshon T et al (2020) Copper associates with differential methylation in placentae from two US birth cohorts. Epigenetics 15:215–230. https://doi.org/10.1080/15592294.2019.1661211

    Article  PubMed  Google Scholar 

  55. Montrose L, Goodrich JM, Morishita M et al (2020) Neonatal lead (Pb) exposure and DNA methylation profiles in dried bloodspots. Int J Environ Res Public Health 17:6775. https://doi.org/10.3390/ijerph17186775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng Z, Huo X, Zhang Y et al (2019) Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. Environ Res 171:536–545. https://doi.org/10.1016/j.envres.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  57. Montes-Castro N, Alvarado-Cruz I, Torres-Sánchez L et al (2019) Prenatal exposure to metals modified DNA methylation and the expression of antioxidant- and DNA defense-related genes in newborns in an urban area. J Trace Elem Med Biol 55:110–120. https://doi.org/10.1016/j.jtemb.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  58. Everson TM, Punshon T, Jackson BP, et al (2018) Cadmium-associated differential methylation throughout the placental genome: epigenome-wide association study of two US birth cohorts. bioRxiv 1–13. https://doi.org/10.1101/130286

  59. Cowley M, Skaar DA, Jima DD et al (2018) Effects of cadmium exposure on DNA methylation at imprinting control regions and genome-wide in mothers and newborn children. Environ Health Perspect 126:037003–037003. https://doi.org/10.1289/EHP2085

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wu S, Hivert M-F, Cardenas A et al (2017) Exposure to low levels of lead in utero and umbilical cord blood DNA methylation in Project Viva: an epigenome-wide association study. Environ Health Perspect 125:087019–087019. https://doi.org/10.1289/EHP1246

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cardenas A, Rifas-Shiman SL, Agha G et al (2017) Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci Rep 7:288–288. https://doi.org/10.1038/s41598-017-00384-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cardenas A, Rifas-Shiman SL, Godderis L et al (2017) Prenatal exposure to mercury: associations with global DNA methylation and hydroxymethylation in cord blood and in childhood. Environ Health Perspect 125:087022–087022. https://doi.org/10.1289/EHP1467

    Article  PubMed  PubMed Central  Google Scholar 

  63. Appleton AA, Jackson BP, Karagas M, Marsit CJ (2017) Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. Epigenetics 12:607–615. https://doi.org/10.1080/15592294.2017.1320637

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kaushal A, Zhang H, Karmaus WJJ et al (2017) Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life. Environ Health 16:50–50. https://doi.org/10.1186/s12940-017-0262-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Phookphan P, Navasumrit P, Waraprasit S et al (2017) Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children. Toxicol Appl Pharmacol 316:36–47. https://doi.org/10.1016/j.taap.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  66. Cardenas A, Koestler DC, Houseman EA et al (2015) Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 10:508–515. https://doi.org/10.1080/15592294.2015.1046026

    Article  PubMed  PubMed Central  Google Scholar 

  67. Maccani JZJ, Koestler DC, Houseman EA et al (2015) DNA methylation changes in the placenta are associated with fetal manganese exposure. Reprod Toxicol 57:43–49. https://doi.org/10.1016/j.reprotox.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mohanty AF, Farin FM, Bammler TK et al (2015) Infant sex-specific placental cadmium and DNA methylation associations. Environ Res 138:74–81. https://doi.org/10.1016/j.envres.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vidal AC, Semenova V, Darrah T et al (2015) Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacol Toxicol 16:20–20. https://doi.org/10.1186/s40360-015-0020-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sen A, Heredia N, Senut M-C et al (2015) Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Sci Rep 5:14466–14466. https://doi.org/10.1038/srep14466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maccani JZJ, Koestler DC, Lester B et al (2015) Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 123:723–729. https://doi.org/10.1289/ehp.1408561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bakulski KM, Lee H, Feinberg JI et al (2015) Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int J Epidemiol 44:1249–1262. https://doi.org/10.1093/ije/dyv032

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rojas D, Rager JE, Smeester L et al (2015) Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 143:97–106. https://doi.org/10.1093/toxsci/kfu210

    Article  CAS  PubMed  Google Scholar 

  74. Broberg K, Ahmed S, Engström K et al (2014) Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis 5:288–298. https://doi.org/10.1017/S2040174414000221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanders A, Smeester L, Rojas D et al (2014) Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 9:212–221. https://doi.org/10.4161/epi.26798

    Article  CAS  PubMed  Google Scholar 

  76. Kippler M, Engström K, Mlakar SJ et al (2013) Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 8:494–503. https://doi.org/10.4161/epi.24401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koestler DC, Avissar-Whiting M, Houseman EA et al (2013) Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ Health Perspect 121:971–977. https://doi.org/10.1289/ehp.1205925

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kile ML, Baccarelli A, Hoffman E et al (2012) Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect 120:1061–1066. https://doi.org/10.1289/ehp.1104173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pilsner JR, Hall MN, Liu X et al (2012) Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS ONE 7:e37147–e37147. https://doi.org/10.1371/journal.pone.0037147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rager JE, Bailey KA, Smeester L et al (2014) Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen 55:196–208. https://doi.org/10.1002/em.21842

    Article  CAS  PubMed  Google Scholar 

  81. Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S (2020) Telomere length determinants in childhood. Clin Chem Lab Med CCLM 58:162–177. https://doi.org/10.1515/cclm-2019-0235

    Article  CAS  PubMed  Google Scholar 

  82. Vaiserman A, Krasnienkov D (2021) Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front Genet 11. https://doi.org/10.3389/fgene.2020.630186

  83. Jiang H, Ju Z, Rudolph KL (2007) Telomere shortening and ageing. Z Für Gerontol Geriatr 40:314–324. https://doi.org/10.1007/s00391-007-0480-0

    Article  CAS  Google Scholar 

  84. Azqueta A, Ladeira C, Giovannelli L et al (2020) Application of the comet assay in human biomonitoring: an hCOMET perspective. Mutat Res Mutat Res 783:108288–108288. https://doi.org/10.1016/j.mrrev.2019.108288

    Article  CAS  Google Scholar 

  85. Larsen EL, Weimann A, Poulsen HE (2019) Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic Biol Med 145:256–283. https://doi.org/10.1016/j.freeradbiomed.2019.09.030

    Article  CAS  PubMed  Google Scholar 

  86. Sommer S, Buraczewska I, Kruszewski M (2020) Micronucleus assay: the state of art, and future directions. Int J Mol Sci 21:1534–1534. https://doi.org/10.3390/ijms21041534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu L, Yao X, Shen Y (2016) Altered mitochondrial DNA copy number contributes to human cancer risk: evidence from an updated meta-analysis. Sci Rep 6:35859–35859. https://doi.org/10.1038/srep35859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Malik AN, Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13:481–492. https://doi.org/10.1016/j.mito.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  89. Picard M (2021) Blood mitochondrial DNA copy number: what are we counting? Mitochondrion 60:1–11. https://doi.org/10.1016/j.mito.2021.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramirez T (2013) Metabolomics in toxicology and preclinical research. ALTEX 30:209–225. https://doi.org/10.14573/altex.2013.2.209

  91. O’Neill C (2015) The epigenetics of embryo development. Anim Front 5:42–49. https://doi.org/10.2527/af.2015-0007

    Article  Google Scholar 

  92. Condrat CE, Thompson DC, Barbu MG et al (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9:276–276. https://doi.org/10.3390/cells9020276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hays SM, Aylward LL, Gagné M et al (2010) Biomonitoring equivalents for inorganic arsenic. Regul Toxicol Pharmacol 58:1–9. https://doi.org/10.1016/j.yrtph.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  94. Hays SM, Nordberg M, Yager JW, Aylward LL (2008) Biomonitoring equivalents (BE) dossier for cadmium (Cd) (CAS No. 7440–43-9). Regul Toxicol Pharmacol 51:S49–S56. https://doi.org/10.1016/j.yrtph.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  95. Abadin H, Ashizawa A, Stevens Y-W, et al (2007) Toxicological profile for lead. Agency for toxic substances and disease registry (US), Atlanta (GA)

  96. Breton CV, Farzan SF (2021) Invited perspective: metal mixtures and child health: the complex interplay of essential and toxic elements. Environ Health Perspect 129:061301–061301. https://doi.org/10.1289/EHP9629

    Article  PubMed  PubMed Central  Google Scholar 

  97. Szyf M (2011) The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 120:235–255. https://doi.org/10.1093/toxsci/kfr024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu Q, Ni X (2015) ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 16:13–19. https://doi.org/10.2174/1389450116666150113121054

    Article  CAS  PubMed  Google Scholar 

  99. Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barbieri FL, Gardon J, Ruiz-Castell M et al (2016) Toxic trace elements in maternal and cord blood and social determinants in a Bolivian mining city. Int J Environ Health Res 26:158–174. https://doi.org/10.1080/09603123.2015.1061114

    Article  CAS  PubMed  Google Scholar 

  101. Gabory A, Roseboom TJ, Moore T et al (2013) Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 4:5–5. https://doi.org/10.1186/2042-6410-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vahter M, Åkesson A, Lidén C et al (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104:85–95. https://doi.org/10.1016/j.envres.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  103. Llop S, Lopez-Espinosa M-J, Rebagliato M, Ballester F (2013) Gender differences in the neurotoxicity of metals in children. Toxicology 311:3–12. https://doi.org/10.1016/j.tox.2013.04.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Marvin Paz-Sabillón has a scholarship of Consejo Nacional de Ciencia y Tecnología-México (CONACyT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology was performed by MPP and MPS. Data collection and preparation of the first draft were done by MPS. All authors performed material selection, data analysis, and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Betzabet Quintanilla-Vega.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paz-Sabillón, M., Torres-Sánchez, L., Piña-Pozas, M. et al. Prenatal Exposure to Potentially Toxic Metals and Their Effects on Genetic Material in Offspring: a Systematic Review. Biol Trace Elem Res 201, 2125–2150 (2023). https://doi.org/10.1007/s12011-022-03323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03323-2

Keywords

Navigation