Skip to main content

Prenatal Metal Exposure and Child Health

  • Chapter
  • First Online:
Early-life Environmental Exposure and Disease

Abstract

Metals are components of the Earth’s crust, and they are widely expressed in nature. Some essential metals required for normal development. Some metals and metalloids including lead, cadmium, mercury, and arsenic have been labeled as toxic even at low dose. Metals have various effects on the human body ranging from normal physiological effects to detrimental effects on body systems. Toxic metals not only have effects on the fetus by reducing birth weight but also produce long-term effects. The nervous system appears to be the most affected system in utero followed by the cardiovascular system. Epigenetic mechanisms that are particularly involved in normal development thus get affected in response to toxic metals. This chapter discusses evidence on the exposure to metals and their effects on early life, which is the most critical period for mankind as all the development and differentiation occur during this time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation (2010) Ten chemicals of major public health concern, P.H.a. Environment, Editor. WHO, Geneva

    Google Scholar 

  2. Schwarzenberg SJ, Georgieff MK (2018) Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics 141(2):e20173716

    PubMed  Google Scholar 

  3. Moore T et al (2017) Getting it right in the first 1000 Days Initiative, C.f.C.C. Health, Editor. Murdoch Children’s Research Institute, Parkville

    Google Scholar 

  4. Ou Y et al (2017) Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects. Environ Int 106:127–134

    CAS  PubMed  Google Scholar 

  5. Kindgren E, Guerrero-Bosagna C, Ludvigsson J (2019) Heavy metals in fish and its association with autoimmunity in the development of juvenile idiopathic arthritis: a prospective birth cohort study. Pediatr Rheumatol Online J 17(1):33

    PubMed  PubMed Central  Google Scholar 

  6. Krachler M, Rossipal E, Micetic-Turk D (1999) Trace element transfer from the mother to the newborn – investigations on triplets of colostrum, maternal and umbilical cord sera. Eur J Clin Nutr 53(6):486–494

    CAS  PubMed  Google Scholar 

  7. Jalali LM, Koski KG (2018) Amniotic fluid minerals, trace elements, and prenatal supplement use in humans emerge as determinants of fetal growth. J Trace Elem Med Biol 50:139–145

    CAS  PubMed  Google Scholar 

  8. Wesseloo R et al (2017) Lithium dosing strategies during pregnancy and the postpartum period. Br J Psychiatry 211(1):31–36

    PubMed  PubMed Central  Google Scholar 

  9. Diav-Citrin O et al (2014) Pregnancy outcome following in utero exposure to lithium: a prospective, comparative, observational study. Am J Psychiatry 171(7):785–794

    PubMed  Google Scholar 

  10. Poels EMP et al (2018) Long-term neurodevelopmental consequences of intrauterine exposure to lithium and antipsychotics: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 27(9):1209–1230

    PubMed  PubMed Central  Google Scholar 

  11. Osiro S et al (2013) When lithium hurts: a look at Ebstein anomaly. Cardiol Rev 21(5):257–263

    PubMed  Google Scholar 

  12. Jacobson SJ et al (1992) Prospective multicentre study of pregnancy outcome after lithium exposure during first trimester. Lancet 339(8792):530–533

    CAS  PubMed  Google Scholar 

  13. Connoley G, Menahem S (1990) A possible association between neonatal jaundice and long-term maternal lithium ingestion. Med J Aust 152(5):272–273

    CAS  PubMed  Google Scholar 

  14. Dorea JG (2015) Exposure to mercury and aluminum in early life: developmental vulnerability as a modifying factor in neurologic and immunologic effects. Int J Environ Res Public Health 12(2):1295–1313

    PubMed  PubMed Central  Google Scholar 

  15. Domingo J, Gomez M, Colomina M (2017) Risks of aluminum exposure during pregnancy. Contrib Sci 1(4):479–487

    Google Scholar 

  16. Mountford PJ, Steele HR (1995) Fetal dose estimates and the ICRP abdominal dose limit for occupational exposure of pregnant staff to technetium-99m and iodine-131 patients. Eur J Nucl Med 22(10):1173–1179

    CAS  PubMed  Google Scholar 

  17. Maguire C et al (1990) Hepatic uptake of technetium-99m HM-PAO in a fetus. J Nucl Med 31(2):237–239

    CAS  PubMed  Google Scholar 

  18. Heaton B (1979) The build up of technetium in breast milk following the administration of 99Tc(m)O4 labelled macroaggregated albumin. Br J Radiol 52(614):149–150

    CAS  PubMed  Google Scholar 

  19. Owunwanne A et al (1998) Placental binding and transfer of radiopharmaceuticals: technetium-99m d, 1-HMPAO. J Nucl Med 39(10):1810–1813

    CAS  PubMed  Google Scholar 

  20. Schaefer C et al (2009) Fetal outcome after technetium scintigraphy in early pregnancy. Reprod Toxicol 28(2):161–166

    CAS  PubMed  Google Scholar 

  21. Moynihan M et al (2019) Prenatal cadmium exposure is negatively associated with adiposity in girls not boys during adolescence. Front Public Health 7:61

    PubMed  PubMed Central  Google Scholar 

  22. Parodi DA et al (2017) Alteration of mammary gland development and gene expression by in utero exposure to cadmium. Int J Mol Sci 18(9):1939

    PubMed Central  Google Scholar 

  23. Kippler M et al (2016) Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine. Eur J Epidemiol 31(11):1123–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin S et al (2018) Urinary vanadium concentration in relation to premature rupture of membranes: a birth cohort study. Chemosphere 210:1035–1041

    CAS  PubMed  Google Scholar 

  25. Hu X et al (2015) Distributions of heavy metals in maternal and cord blood and the association with infant birth weight in China. J Reprod Med 60(1–2):21–29

    PubMed  PubMed Central  Google Scholar 

  26. Rabito FA et al (2014) Changes in low levels of lead over the course of pregnancy and the association with birth outcomes. Reprod Toxicol 50:138–144

    CAS  PubMed  Google Scholar 

  27. Rodosthenous RS et al (2017) Prenatal lead exposure and fetal growth: smaller infants have heightened susceptibility. Environ Int 99:228–233

    CAS  PubMed  Google Scholar 

  28. Stroustrup A et al (2016) Toddler temperament and prenatal exposure to lead and maternal depression. Environ Health 15(1):71

    PubMed  PubMed Central  Google Scholar 

  29. Farzan SF et al (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121(Pt 2):1289–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou L et al (2017) Prenatal maternal stress in relation to the effects of prenatal lead exposure on toddler cognitive development. Neurotoxicology 59:71–78

    CAS  PubMed  Google Scholar 

  31. Dancause KN et al (2010) Chronic radiation exposure in the Rivne-Polissia region of Ukraine: implications for birth defects. Am J Hum Biol 22(5):667–674

    PubMed  Google Scholar 

  32. Lazjuk GI, Nikolaev DL, Novikova IV (1997) Changes in registered congenital anomalies in the Republic of Belarus after the Chernobyl accident. Stem Cells 15(Suppl 2):255–260

    PubMed  Google Scholar 

  33. Racine R et al (2010) Hepatic cholesterol metabolism following a chronic ingestion of cesium-137 starting at fetal stage in rats. J Radiat Res 51(1):37–45

    CAS  PubMed  Google Scholar 

  34. Fort M et al (2014) Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. Environ Sci Pollut Res Int 21(15):9234–9241

    CAS  PubMed  Google Scholar 

  35. Zhang XQ et al (2011) ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 24(6):661–669

    CAS  PubMed  Google Scholar 

  36. Bar-Ilan O et al (2012) Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology 6(6):670–679

    CAS  PubMed  Google Scholar 

  37. Da Silva GH et al (2018) Toxicity assessment of TiO2-MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (Zebrafish) embryos. Ecotoxicol Environ Saf 165:136–143

    PubMed  Google Scholar 

  38. Hong F et al (2018) Nano-TiO2 inhibits development of the central nervous system and its mechanism in offspring mice. J Agric Food Chem 66(44):11767–11774

    CAS  PubMed  Google Scholar 

  39. Igra AM et al (2016) Boron exposure through drinking water during pregnancy and birth size. Environ Int 95:54–60

    CAS  PubMed  Google Scholar 

  40. Fail PA et al (1998) General, reproductive, developmental, and endocrine toxicity of boronated compounds. Reprod Toxicol 12(1):1–18

    CAS  PubMed  Google Scholar 

  41. Navasumrit P et al (2019) Exposure to arsenic in utero is associated with various types of DNA damage and micronuclei in newborns: a birth cohort study. Environ Health 18(1):51

    PubMed  PubMed Central  Google Scholar 

  42. Claus Henn B et al (2016) Prenatal arsenic exposure and birth outcomes among a population residing near a mining-related superfund site. Environ Health Perspect 124(8):1308–1315

    PubMed  Google Scholar 

  43. Thomas DJ (2013) The die is cast: arsenic exposure in early life and disease susceptibility. Chem Res Toxicol 26(12):1778–1781

    CAS  PubMed  Google Scholar 

  44. Ungvary G et al (2001) The effect of prenatal indium chloride exposure on chondrogenic ossification. J Toxicol Environ Health A 62(5):387–396

    CAS  PubMed  Google Scholar 

  45. Badri N et al (2018) Gold and female reproductive organs: an ultrastructural study. Biol Trace Elem Res 183(2):280–287

    CAS  PubMed  Google Scholar 

  46. Yang H et al (2018) Murine exposure to gold nanoparticles during early pregnancy promotes abortion by inhibiting ectodermal differentiation. Mol Med 24(1):62

    PubMed  PubMed Central  Google Scholar 

  47. Forsberg L et al (2018) Maternal mood disorders and lithium exposure in utero were not associated with poor cognitive development during childhood. Acta Paediatr 107(8):1379–1388

    CAS  PubMed  Google Scholar 

  48. Harari F et al (2012) Early-life exposure to lithium and boron from drinking water. Reprod Toxicol 34(4):552–560

    CAS  PubMed  Google Scholar 

  49. Liu B et al (2019) Prenatal aluminum exposure is associated with increased newborn mitochondrial DNA copy number. Environ Pollut 252(Pt A):330–335

    CAS  PubMed  Google Scholar 

  50. Liu Z et al (2018) The effects of lead and aluminum exposure on congenital heart disease and the mechanism of oxidative stress. Reprod Toxicol 81:93–98

    CAS  PubMed  Google Scholar 

  51. Wang Y et al (2016) Effects of prenatal exposure to cadmium on neurodevelopment of infants in Shandong. China Environ Pollut 211:67–73

    CAS  PubMed  Google Scholar 

  52. Xu X et al (2015) Associations of cadmium, bisphenol A and polychlorinated biphenyl co-exposure in utero with placental gene expression and neonatal outcomes. Reprod Toxicol 52:62–70

    CAS  PubMed  Google Scholar 

  53. Hu J et al (2018) Effects of trimester-specific exposure to vanadium on ultrasound measures of fetal growth and birth size: a longitudinal prospective prenatal cohort study. Lancet Planet Health 2(10):e427–e437

    PubMed  Google Scholar 

  54. Hu J et al (2017) Association of adverse birth outcomes with prenatal exposure to vanadium: a population-based cohort study. Lancet Planet Health 1(6):e230–e241

    PubMed  Google Scholar 

  55. Jiang M et al (2016) A nested case-control study of prenatal vanadium exposure and low birthweight. Hum Reprod 31(9):2135–2141

    CAS  PubMed  Google Scholar 

  56. Pi X et al (2018) Concentrations of selected heavy metals in placental tissues and risk for neonatal orofacial clefts. Environ Pollut 242(Pt B):1652–1658

    CAS  PubMed  Google Scholar 

  57. Silver MK et al (2016) Low-level prenatal lead exposure and infant sensory function. Environ Health 15(1):65

    PubMed  PubMed Central  Google Scholar 

  58. Shah-Kulkarni S et al (2016) Neurodevelopment in early childhood affected by prenatal lead exposure and Iron intake. Medicine (Baltimore) 95(4):e2508

    CAS  Google Scholar 

  59. Hong YC et al (2014) Postnatal growth following prenatal lead exposure and calcium intake. Pediatrics 134(6):1151–1159

    PubMed  Google Scholar 

  60. Vigeh M et al (2014) Low level prenatal blood lead adversely affects early childhood mental development. J Child Neurol 29(10):1305–1311

    PubMed  Google Scholar 

  61. Wei Y et al (2019) Levels of uranium and thorium in maternal scalp hair and risk of orofacial clefts in offspring. J Environ Radioact 204:125–131

    CAS  PubMed  Google Scholar 

  62. Vazquez-Salas RA et al (2014) Prenatal molybdenum exposure and infant neurodevelopment in Mexican children. Nutr Neurosci 17(2):72–80

    CAS  PubMed  Google Scholar 

  63. Callan AC et al (2016) Sex specific influence on the relationship between maternal exposures to persistent chemicals and birth outcomes. Int J Hyg Environ Health 219(8):734–741

    CAS  PubMed  Google Scholar 

  64. Pi X et al (2019) Association between concentrations of barium and aluminum in placental tissues and risk for orofacial clefts. Sci Total Environ 652:406–412

    PubMed  Google Scholar 

  65. Zhang N et al (2018) Barium exposure increases the risk of congenital heart defects occurrence in offspring. Clin Toxicol (Phila) 56(2):132–139

    Google Scholar 

  66. Han BH et al (2011) Pregnancy outcome after 1st-trimester inadvertent exposure to barium sulphate as a contrast media for upper gastrointestinal tract radiography. J Obstet Gynaecol 31(7):586–588

    CAS  PubMed  Google Scholar 

  67. Han BH et al (2010) Conventional barium enema in early pregnancy. J Obstet Gynaecol 30(6):559–562

    CAS  PubMed  Google Scholar 

  68. Barbone F et al (2019) Prenatal mercury exposure and child neurodevelopment outcomes at 18 months: results from the Mediterranean PHIME cohort. Int J Hyg Environ Health 222(1):9–21

    CAS  PubMed  Google Scholar 

  69. Kim Y et al (2018) Prenatal mercury exposure, fish intake and neurocognitive development during first three years of life: prospective cohort mothers and Children’s environmental health (MOCEH) study. Sci Total Environ 615:1192–1198

    CAS  PubMed  Google Scholar 

  70. Qi J et al (2019) Prenatal thallium exposure and poor growth in early childhood: a prospective birth cohort study. Environ Int 123:224–230

    CAS  PubMed  Google Scholar 

  71. Mullin AM et al (2019) Maternal blood arsenic levels and associations with birth weight-for-gestational age. Environ Res 177:108603

    CAS  PubMed  Google Scholar 

  72. Suhl J et al (2018) Maternal arsenic exposure and nonsyndromic orofacial clefts. Birth Defects Res 110(19):1455–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang B et al (2018) Prenatal exposure to arsenic and neurobehavioral development of newborns in China. Environ Int 121(Pt 1):421–427

    CAS  PubMed  Google Scholar 

  74. Liao CM et al (2008) Arsenic cancer risk posed to human health from tilapia consumption in Taiwan. Ecotoxicol Environ Saf 70(1):27–37

    CAS  PubMed  Google Scholar 

  75. Huyck KL et al (2007) Maternal arsenic exposure associated with low birth weight in Bangladesh. J Occup Environ Med 49(10):1097–1104

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binafsha Manzoor Syed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syed, B.M. (2020). Prenatal Metal Exposure and Child Health. In: Xia, Y. (eds) Early-life Environmental Exposure and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-3797-4_4

Download citation

Publish with us

Policies and ethics