Skip to main content
Log in

Hepatorenal Toxicity of Inorganic Arsenic in White Pekin Ducks and Its Amelioration by Using Ginger

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The toxic metalloid arsenic is known to cause liver and kidney injury in many humans and animals. The goal of this paper was to exemplify the antagonism of ginger against arsenic (As)-induced hepato-renal toxicity. In addition, the pathways Nrf2/Keap1 and NF/κB were studied to reveal the molecular mechanism of the stress. One hundred twenty 7-day-old White Pekin ducks were randomly allocated into five groups, having 24 birds in each. Each group contained three replicates having 8 birds in each replicate and maintained for 90 days. The groups were as follows: T-1 [control-basal diet with normal water], T-2 [T1 + As at 28 ppm/L of water], T-3 [T2 + ginger powder at 100 mg/kg feed], T-4 [T2 + ginger powder at 300 mg/kg feed], and T-5 [T2 + ginger powder at 1 g/kg feed]. It was observed that there was a significant increase in oxidative parameters whereas a significant decrease in antioxidant parameters in hepato-renal tissues in T-2. The exposure to As not only decreased the mRNA expression of antioxidant parameters like Nrf2, SOD-1, CAT, GPX, and HO-1and anti-inflammatory markers like IL-4 and IL-10 but also increased the m-RNA expression of NF-κB, Keap-1 and pro-inflammatory markers like IL-2, Il-6, IL-18, IL-1β, and TNF-α. There was also an accumulation of As in hepatic and renal tissue, confirmed by residual analysis of these tissues. By correlating the above parameters, As at 28 ppm showed significant toxic effects, and ginger powder at 1 g/kg feed effectively counteracted the toxic effects of As in ducks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Chart 3
Chart 4
Chart 5
Chart 6
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data used to support the findings are all included in the article.

References

  1. Chen QY, Costa M (2021) Arsenic: a global environmental challenge. Annu Rev Pharmacol Toxicol 61(1):47–63. https://doi.org/10.1146/annurev-pharmtox-030220-013418

    Article  CAS  PubMed  Google Scholar 

  2. NRC (National Research Council- US) Subcommittee to update the 1999 arsenic in drinking water report (2001) Arsenic in drinking water: 2001 update. Washington (DC): National Academies Press (US)

  3. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Some drinking-water disinfectants and contaminants, including arsenic. Lyon (FR): International Agency for Research on Cancer. ARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 84

  4. Pal A, Nayak B, Das B, Hossain MA, Ahamed S, Chakraborti D (2007) Additional danger of arsenic exposure through inhalation from burning of cow dung cakes laced with arsenic as a fuel in arsenic affected villages in Ganga-Meghna-Brahmaputra plain. J Environ Monit 9(10):1067–1070. https://doi.org/10.1039/b709339j

    Article  CAS  PubMed  Google Scholar 

  5. Bera AK, Rana T, Bhattacharya D, Das S, Pan D, Das SK (2011) Sodium arsenite-induced alteration in hepatocyte function of rat with special emphasis on superoxide dismutase expression pathway and its prevention by mushroom lectin. Basic Clin Pharmacol Toxicol 109(4):240–244. https://doi.org/10.1111/j.1742-7843.2011.00718.x

    Article  CAS  PubMed  Google Scholar 

  6. Nevens F, Fevery J, Van Steenbergen W, Sciot R, Desmet V, De Groote J (1990) Arsenic and non-cirrhotic portal hypertension- a report of eight cases. J Hepatol 11(1):80–85. https://doi.org/10.1016/0168-8278(90)90276-w

    Article  CAS  PubMed  Google Scholar 

  7. Guha Mazumder DN (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128(4):436–444

    CAS  PubMed  Google Scholar 

  8. WHO (1993) Guideline for drinking water quality, Recommendation .Vol. 1, 2nd ed. World Health Organisation, Geneva

  9. Rahman AM, Hasegawa H, MahfuzurRahman M, MazidMiah MA, Tasmin A (2008) Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol Environ Saf 69(2):317–324. https://doi.org/10.1016/j.ecoenv.2007.01.005

    Article  CAS  Google Scholar 

  10. Kadirvel R, Sundaram K, Mani S, Samuel S, Elango N, Panneerselvam C (2007) Supplementation of ascorbic acid and alpha-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Hum Exp Toxicol 26(12):939–946. https://doi.org/10.1177/0960327107087909

    Article  CAS  PubMed  Google Scholar 

  11. Cai F, Ren J, Tao S, Wang X (2016) Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings. Environ Pollut 209:169–176. https://doi.org/10.1016/j.envpol.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  12. Rana T, Bera AK, Mondal DK, Das S, Bhattacharya D, Samanta S, Pan D, Das SK (2014) Arsenic residue in the products and by-products of chicken and ducks: a possible concern of avian health and environmental hazard to the population in West Bengal, India. India Toxicol Ind Health 30(6):576–580. https://doi.org/10.1177/0748233712462467

    Article  CAS  PubMed  Google Scholar 

  13. Cavalera S, Di Nardo F, Spano G, Anfossi L, Manesiotis P, Baggiani C (2020) Stoichiometric molecular imprinting using polymerisable urea and squaramide receptors for the solid phase extraction of organo-arsenic compound roxarsone. Anal Methods 12(47):5729–5736. https://doi.org/10.1039/d0ay01635g

    Article  CAS  PubMed  Google Scholar 

  14. Kuo CC, Moon KA, Wang SL, Silbergeld E, Navas-Acien A (2017) The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect 125(8):087001. https://doi.org/10.1289/EHP577

    Article  PubMed  PubMed Central  Google Scholar 

  15. WHO (2003) Environmental health criteria-224. arsenic and arsenic compounds, 2nd Edition. World Health Organization, Geneva

  16. Santra A, Maiti A, Chowdhury A, Mazumder DN (2000) Oxidative stress in liver of mice exposed to arsenic-contaminated water. Indian J Gastroenterol 19(3):112–115

    CAS  PubMed  Google Scholar 

  17. Nandi D, Patra RC, Swarup D (2006) Oxidative stress indices and plasma biochemical parameters during oral exposure to arsenic in rats. Food Chem Toxicol 44(9):1579–1584. https://doi.org/10.1016/j.fct.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  18. Zhong G, Hu T, Tang L, Li T, Wu S, Duan X, Pan J, Zhang H, Tang Z, Feng X, Hu L (2022) Arsenic causes mitochondrial biogenesis obstacles by inhibiting the AMPK/PGC-1α signaling pathway and also induces apoptosis and dysregulated mitophagy in the duck liver. Ecotoxicol Environ Saf 230:113117. https://doi.org/10.1016/j.ecoenv.2021.113117

    Article  CAS  Google Scholar 

  19. Gul Kazi T, Qadir Shah A, Imran Afridi H, Ali Shah N, Balal Arain M (2013) Hazardous impact of organic arsenical compounds in chicken feed on different tissues of broiler chicken and manure. Ecotoxicol Environ Saf 87:120–123. https://doi.org/10.1016/j.ecoenv.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  20. Waalkes MP, Ward JM, Diwan BA (2004) Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis 25(1):133–141. https://doi.org/10.1093/carcin/bgg181

    Article  CAS  PubMed  Google Scholar 

  21. Mazumder DN (2005) Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol 206(2):169–175. https://doi.org/10.1016/j.taap.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  22. Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A (2014) Arsenic and chronic kidney disease: a systematic review. Curr Environ Health Rep 1(3):192–207. https://doi.org/10.1007/s40572-014-0024-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palma-Lara I, Martínez-Castillo M, Quintana-Pérez JC, Arellano-Mendoza MG, Tamay-Cach F, Valenzuela-Limón OL, García-Montalvo EA, Hernández-Zavala A (2020) Arsenic exposure: a public health problem leading to several cancers. Regul Toxicol Pharmacol 110:104539. https://doi.org/10.1016/j.yrtph.2019.104539

    Article  CAS  PubMed  Google Scholar 

  24. Renu K, Saravanan A, Elangovan A, Ramesh S, Annamalai S, Namachivayam A, Abel P, Madhyastha H, Madhyastha R, Maruyama M, Balachandar V, Valsala Gopalakrishnan A (2020) An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci 1(260):118438. https://doi.org/10.1016/j.lfs.2020.118438

    Article  CAS  Google Scholar 

  25. Taggart MA, Figuerola J, Green AJ, Mateo R, Deacon C, Osborn D, Meharg AA (2006) After the Aznalcóllar mine spill: arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species. Environ Res 100(3):349–361. https://doi.org/10.1016/j.envres.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  26. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51(2):257–281. https://doi.org/10.1016/j.freeradbiomed.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  27. Kwak MK, Itoh K, Yamamoto M, Sutter TR, Kensler TW (2001) Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H–1, 2-dimethiole-3-thione. Mol Med 7(2):135–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557. https://doi.org/10.1016/j.molmed.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  29. Sinha D, Biswas J, Bishayee A (2013) Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Arch Toxicol 87(2):383–396. https://doi.org/10.1007/s00204-012-0920-5

    Article  CAS  PubMed  Google Scholar 

  30. Souza ACF, Bastos DSS, Santos FC, Sertorio MN, Ervilha LOG, Gonçalves RV, de Oliveira LL, Machado-Neves M (2018) Arsenic aggravates oxidative stress causing hepatic alterations and inflammation in diabetic rats. Life Sci 209:472–480. https://doi.org/10.1016/j.lfs.2018.08.054

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Yu C, Yao M, Wang L, Liang B, Zhang B, Huang X, Zhang A (2018) The PKCδ-Nrf2-ARE signalling pathway may be involved in oxidative stress in arsenic-induced liver damage in rats. Environ Toxicol Pharmacol 62:79–87. https://doi.org/10.1016/j.etap.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  32. Kwon DJ, Bae YS, Ju SM, Youn GS, Choi SY, Park J (2014) Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-κB and JNK activation in RAW 264.7 macrophages. BMB Rep 47(6):318–323. https://doi.org/10.5483/bmbrep.2014.47.6.200

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vilela MC, Campos RD, Mansur DS, Rodrigues DH, Lacerda-Queiroz N, Lima GK, Rachid MA, Kroon EG, Campos MA, Teixeira AL (2011) Role of IL-4 in an experimental model of encephalitis induced by intracranial inoculation of herpes simplex virus-1 (HSV-1). Arq Neuropsiquiatr 69(2A):237–241. https://doi.org/10.1590/s0004-282x2011000200019

    Article  PubMed  Google Scholar 

  34. Ahn J, Grün I, Fernando L (2002) Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 67:1364–1369. https://doi.org/10.1111/j.1365-2621.2002.tb10290.x

    Article  CAS  Google Scholar 

  35. Rima T and Narasu ML (2017) Evaluation of cytotoxic and genotoxic effects of Zerumbone on colon adenocarcinoma colo205 cells and human lymphocytes. Int J Pharm Pharm Sci 9(11):92–96. https://doi.org/10.22159/ijpps.2017v9i11.21120

  36. Kadnur SV, Goyal RK (2005) Beneficial effects of Zingiber officinale Roscoe on fructose induced hyperlipidemia and hyperinsulinemia in rats. Indian J Exp Biol 43(12):1161–1164

    PubMed  Google Scholar 

  37. Gupta SK, Sharma A (2014) Medicinal properties of Zingiber officinale Roscoe-a review. J Pharma Biolog Sci 9(5):124–129. https://doi.org/10.9790/3008-0955124129

    Article  Google Scholar 

  38. Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46(2):409–420. https://doi.org/10.1016/j.fct.2007.09.085

    Article  CAS  PubMed  Google Scholar 

  39. Chrubasik S, Pittler MH, Roufogalis BD (2005) Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 12(9):684–701. https://doi.org/10.1016/j.phymed.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  40. Ahmed RS, Seth V, Banerjee BD (2000) Influence of dietary ginger (Zingiber officinales Rosc) on antioxidant defense system in rat: comparison with ascorbic acid. Indian J Exp Biol 38(6):604–606

    CAS  PubMed  Google Scholar 

  41. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A (2010) Protective effect of Etlingera elatior (torch ginger) extract on lead acetate-induced hepatotoxicity in rats. J Toxicol Sci 35(5):663–671. https://doi.org/10.2131/jts.35.663

    Article  PubMed  Google Scholar 

  42. Andarwulan N, Kurniasih D, Apriady RA, Rahmat H, Roto AV, Bolling BW (2012) Polyphenols, carotenoids, and ascorbicacid in underutilized medicinal vegetables. J Funct Foods 4(1):339–347. https://doi.org/10.1016/j.jff.2012.01.003

    Article  CAS  Google Scholar 

  43. Kruawan K, Kangsadalampai K (2006) Antioxidant activity, phenolic compound contents and antimutagenic activity of some water extract of herbs. Thai J Pharm Sci 30:28–35

    CAS  Google Scholar 

  44. Panda SK, Kumar D, Jena GR, Sethy K, Mishra SK, Swain BK, Naik PK, Beura CK, Elmorsy MAM (2021) Efficacy of ginger on male reproductive traits and oxidative stress indices in White Pekin ducks intoxicated with arsenic. ANFT 21(3):559–569. https://doi.org/10.5958/0974-181X.2021.00046.9

    Article  Google Scholar 

  45. Das D, Pamia J, kumar D, Panda SK, Jenna G (2021) Histopathological grading of induced cardiotoxicity due to arsenic and its alleviation by Allium sativum in ducks. IJAR. B-4696. https://doi.org/10.18805/ijar.b-4696

  46. BIS (2007) Bureau of Indian Standards, Poultry Feeds Specification (5th Revision), Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Deli-110002

  47. Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immunefunction, oxidation resistance, and tissue selenium content inbroilers. Poult Sci 91(10):2532–2539. https://doi.org/10.3382/ps.2012-02160

    Article  CAS  PubMed  Google Scholar 

  48. Ehtisham S, Rahman SU, Siddique M, Qureshi AS (2011) Involvement of Mycoplasma synoviae in respiratory distress cases of broilers. Pak Vet J 31(2):117–119

    Google Scholar 

  49. Rehman SU (1984) Lead-induced regional lipid peroxidation in brain. Toxicol Lett 21(3):333–337. https://doi.org/10.1016/0378-4274(84)90093-6

    Article  Google Scholar 

  50. Sedlak J, Lindsay RH (1968) Estimation of total, protein bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  CAS  PubMed  Google Scholar 

  51. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  52. Madesh M, Balasubramanian KA (1993) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 35(3):184–188

    Google Scholar 

  53. Grisham MB, Specian RD, Zimmerman TE (1994) Effects of nitric oxide synthase inhibition on the pathophysiology observed in a model of chronic granulomatous colitis. J Pharmacol Exp Ther 271(2):1114–1121

    CAS  PubMed  Google Scholar 

  54. Patriarca P, Dri P, Snidero M (1997) Interference of myeloperoxidase with the estimation of superoxide dismutase activity. J Lab Clin Med 90(2):289–294

    Google Scholar 

  55. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82(7):810–818. https://doi.org/10.1161/01.RES.82.7.810

    Article  CAS  PubMed  Google Scholar 

  56. Sastry KV, Moudgal RP, Mohan J, Tyagi JS, Rao GS (2002) Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Anal Biochem 306(1):79–82. https://doi.org/10.1006/abio.2002.5676

    Article  CAS  PubMed  Google Scholar 

  57. Hershey JW, Oostdyk TS, Keliher PN (1988) Determination of arsenic and selenium in environmental and agricultural samples by hydride generation atomic absorption spectrophotometry. J Assoc Off Anal Chem 71(6):1090–1093

    CAS  PubMed  Google Scholar 

  58. Dos Passos AS, Neri TS, Maciel MV, da Silva Rom~ao IL, Lemos VA (2012) Determination of arsenic in chicken feed by hydride generation atomic absorption spectrometry after preconcentration with polyurethane foam. Food Addit Contam. Part A Chem Anal Control Expo Risk Assess 29(11):1689–1695. https://doi.org/10.1080/19440049.2012.706833

  59. Kalavathi S, Anand KA, Gopala RA, Srilatha Ch, Rajasekhar RA (2011) Sodium arsenite toxicity in broiler chicks and its amelioration: haemato-biochemical and pathological studies. Indian J Vet Pathol 35(2):171–176

    Google Scholar 

  60. Bancroft JD, Gamble M (2007) Theory and practice of histological techniques, 6th edition. Churchill Livingstone, London, UK pp 125–138

  61. Sikandar A, Cheema AH, Younus M, Aslam A, Zaman MA, Rehman T (2012) Histopathological and serological studies on paratuberculosis in cattle and buffaloes. Pak Vet J 32(4):547–551

    Google Scholar 

  62. Khan A, Sharaf R, Khan MZ, Saleemi MK, Mahmood F (2013) Arsenic toxicity in broiler chicks and its alleviation with ascorbic acid: a toxico-patho-biochemical study. Int J Agric Biol 15(6):1105–1111

    CAS  Google Scholar 

  63. Das AK, Dewanjee S, Sahu R, Dua TK, Gangopadhyay M, Sinha MK (2010) Protective effect of Corchorus olitorius leaves against arsenic-induced oxidative stress in rat brain. Environ Toxicol Pharmacol 29(1):64–69. https://doi.org/10.1016/j.etap.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  64. Yousef MI, El-Demerdash FM, Radwan FM (2008) Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 46(11):3506–3511. https://doi.org/10.1016/j.fct.2008.08.031

    Article  CAS  PubMed  Google Scholar 

  65. Adil M, Kandhare AD, Visnagri A, Bodhankar SL (2015) Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 37(8):1396–1407. https://doi.org/10.3109/0886022X.2015.1074462

    Article  CAS  PubMed  Google Scholar 

  66. Bashir S, Sharma Y, Irshad M, Gupta SD, Dogra TD (2006) Arsenic-induced cell death in liver and brain of experimental rats. Basic Clin Pharmacol Toxicol 98(1):38–43. https://doi.org/10.1111/j.1742-7843.2006.pto_170.x

    Article  CAS  PubMed  Google Scholar 

  67. Sharma A, Sharma MK, Kumar M (2007) Protective effect of mentha piperita against arsenic-induced toxicity in liver of Swiss Albino mice. Basic Clin Pharmacol Toxicol 100(4):249–257. https://doi.org/10.1111/j.1742-7843.2006.00030.x

    Article  CAS  PubMed  Google Scholar 

  68. Khaki AA, Khaki A (2010) Antioxidant effect of ginger to prevents lead-induced liver tissue apoptosis in rat. J Med Plant Res 4(14):1492–1495

    Google Scholar 

  69. Abdel-Hameid N (2009) A protective effect of calcium carbonate against arsenic toxicity of the Nile Cat fish, Clarias gariepinus. Turkish J Fish Aquat Sci 9(2):191–200. https://doi.org/10.4194/trjfas.2009.0211

    Article  Google Scholar 

  70. Tahirul M, Rahaman T, Islam MS, Ferdous KA, Hassan MA (2020) Effect of different doses of dietary arsenic on biochemical, gross and histo morphological changes in different organs of commercial broiler. SAJBR 3(1):1–17

    Google Scholar 

  71. Saleh N, Allam T, El-latif AA, Ghazy E (2019) The effects of different levels of thyme (Thymus vulgaris) and ginger (Zingiber officinale) essential oils on performance, hematological, biochemical and immunological parameters in broilers. Global Veterinaria 12(6):736–744. https://doi.org/10.5829/idosi.gv.2014.12.06.83189

  72. Herve T, Raphaël KJ, Ferdinand N, Victor Herman N, Willy Marvel NM, Cyril D’Alex T, Laurine Vitrice FT (2019) Effects of ginger ( Zingiber officinale, Roscoe) essential oil on growth and laying performances, serum metabolites, and egg yolk antioxidant and cholesterol status in laying Japanese Quail. J Vet Med 2019:7857504. https://doi.org/10.1155/2019/7857504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dalal B, Gangopadhyay P, Mukherjee A, Roychowdhury A (2007) Identification of indicators of arsenic induced nephrotoxicity in humans. Internet J Toxicol 5:2. https://doi.org/10.5580/e28

    Article  Google Scholar 

  74. Saxena PN, Anand S, Saxena N, Bajaj P (2009) Effect of arsenic trioxide on renal functions and its modulation by Curcuma aromatica leaf extract in Albino rat. J Environ Biol 30(4):527–531

    CAS  PubMed  Google Scholar 

  75. Muthumani M, Prabu SM (2014) Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Cardiovasc Toxicol 14(1):83–97. https://doi.org/10.1007/s12012-013-9227-x

    Article  CAS  PubMed  Google Scholar 

  76. Akbarian A, Golian A, Sheikh Ahmadi A, Moravej H (2011) Effects of ginger root ( Zingiber officinale ) on egg yolk cholesterol, antioxidant status and performance of laying hens. J Appl Anim Res 39(1):19–21. https://doi.org/10.1080/09712119.2011.558612

    Article  CAS  Google Scholar 

  77. Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27(11–12):1405–1412. https://doi.org/10.1016/S0891-5849(99)00186-0

    Article  CAS  PubMed  Google Scholar 

  78. Lynn S, Lai HT, Gurr JR, Jan KY (1997) Arsenite retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis 12(5):353–358. https://doi.org/10.1093/mutage/12.5.353

    Article  CAS  PubMed  Google Scholar 

  79. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255(1–2):67–78. https://doi.org/10.1023/B:MCBI.0000007262.26044.e8

    Article  CAS  PubMed  Google Scholar 

  80. Wang L, Xu Z (2006) Effects of arsenic (AsIII) on lipid peroxidation, glutathione content and antioxidant enzymes in growing pigs. Asian-Australas J Anim 19(5):727–733. https://doi.org/10.5713/ajas.2006.727

    Article  CAS  Google Scholar 

  81. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87(4):1620–1624. https://doi.org/10.1073/pnas.87.4.1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee SE, Song HJ, Park SY, Nam Y, Min CH, Lee DY, Jeong JY, Ha HS, Kim H-J, Whang WK, Jeong JH, Kim IK, Kim HR, Min YS, Sohn UD (2013) Effect of ECQ on iodoacetamide-induced chronic gastritis in rats. Korean J Physiol Pharmacol 17(5):469–467. https://doi.org/10.4196/kjpp.2013.17.5.469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brunati AM, Pagano MA, Bindoli A, Rigobello MP (2010) Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes. Free Radic Res 44(4):363–378. https://doi.org/10.3109/10715760903555836

    Article  CAS  PubMed  Google Scholar 

  84. Banerjee M, Banerjee N, Ghosh P, Das JK, Basu S, Sarkar AK, States JC, Giri AK (2010) Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage. Toxicol Appl Pharmacol 249(1):47–54. https://doi.org/10.1016/j.taap.2010.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Masella R, Di Benedetto R, Varı` R, Filesi C, Giovannini C, (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16(10):577–586. https://doi.org/10.1016/j.jnutbio.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  86. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309. https://doi.org/10.1126/science.3287616

    Article  CAS  PubMed  Google Scholar 

  87. Saraswathi KY, Muthal A, Kandhare A, Rojatkar S, Bodhankar S (2014) Study of methanolic extract of Artemisia pallens wall on endurance of laboratory animals. Pharmacologia 5(8):298–309. https://doi.org/10.5567/pharmacologia.2014.298.309

    Article  Google Scholar 

  88. Gupta R, Flora SJ (2006) Protective effects of fruit extracts of Hippophae rhamnoides L. against arsenic toxicity in Swiss Albino mice. Hum Exp Toxicol 25(6):285–295. https://doi.org/10.1191/0960327106ht636oa

    Article  CAS  PubMed  Google Scholar 

  89. Das S, Santra A, Lahiri S, Guha Mazumder DN (2005) Implications of oxidative stress and hepatic cytokine (TNF-α and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol 204(1):18–26. https://doi.org/10.1016/j.taap.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  90. Isuzugawa K, Inoue M, Ogihara Y (2001) Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol Pharm Bull 24(9):1022–1026. https://doi.org/10.1248/bpb.24.1022

    Article  CAS  PubMed  Google Scholar 

  91. Gülçin İ (2009) Antioxidant activity of l-adrenaline: a structure–activity insight. Chem Biol Interact 179(2–3):71–80. https://doi.org/10.1016/j.cbi.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  92. Buyukokuroglu M, Gulcin I (2009) In vitro antioxidant and antiradical properties of Hippophae rhamnoides L. Pharmacogn Mag 5(19):189–195

    Google Scholar 

  93. Sohaib M, Butt MS, Shabbir MA, Shahid M (2015) Lipid stability, antioxidant potential and fatty acid composition of broilers breast meat as influenced by quercetin in combination with α-tocopherol enriched diets. Lipids Health Dis 14(1):61. https://doi.org/10.1186/s12944-015-0058-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gjorgieva D, Panovska TK, Ruskovska T, BaIeva K, Stafilov T (2013) Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. BioMed Res Int 2013:1–6. https://doi.org/10.1155/2013/276417

    Article  Google Scholar 

  95. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  96. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duan T, Hu T, Wu C, Yeh YT, Lu J, Zhang Q, Li X, Jian W, Luo P (2020) PINK1/Parkin-mediated mitophagy is involved in NaAsO2-induced apoptosis of human hepatic cells through activation of ERK signaling. Toxicol Vitr 66:104857. https://doi.org/10.1016/j.tiv.2020.104857

    Article  CAS  Google Scholar 

  98. Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Valsala Gopalakrishnan A (2021) Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium) – induced hepatotoxicity – a review. Chemosphere 271:129735. https://doi.org/10.1016/j.chemosphere.2021.129735

    Article  CAS  PubMed  Google Scholar 

  99. Sinha D, Biswas J, Bishayee A (2013) Nrf-2 mediated redox signaling in As carcinogenesis: a review. Arch Toxicol 87(2):383–396. https://doi.org/10.1007/s00204-012-0920-5

    Article  CAS  PubMed  Google Scholar 

  100. Janasik B, Reszka E, Stanislawska M, Jablonska E, Kuras R, Wieczorek E, Malachowska B, Fendler W, Wasowicz W (2018) Effect of arsenic exposure on Nrf2-Keap1 pathway and epigenetic modification. Biol Trace Elem Res 185(1):11–19. https://doi.org/10.1007/s12011-017-1219-4

    Article  CAS  PubMed  Google Scholar 

  101. Massrieh W, Derjuga A, Blank V (2006) Induction of endogenous Nrf2/Small Maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells. Antioxid Redox Signal 8(1–2):53–59. https://doi.org/10.1089/ars.2006.8.53

    Article  CAS  PubMed  Google Scholar 

  102. Zhao G, Yu R, Deng J, Zhao Q, Li Y, Joo M, van Breemen RB, Christman JW, Xiao L (2013) Pivotal role of reactive oxygen species in differential regulation of lipopolysaccharide-induced prostaglandins production in macrophages. Mol Pharmacol 83(1):167–178. https://doi.org/10.1124/mol.112.080762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin-Chouly C, Morzadec C, Bonvalet M, Galibert MD, Fardel O, Vernhet L (2011) Inorganic arsenic alters expression of immune and stress response genes in activated primary human T lymphocytes. Mol Immunol 48(6–7):956–965. https://doi.org/10.1016/j.molimm.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  104. Zhang K, Zhao P, Guo G, Guo Y, Tian L, Sun X, Li S, He Y, Sun Y, Chai H, Zhang W, Xing M (2016) Arsenic trioxide attenuates Nf-κb and cytokine mRNA levels in the livers of cocks. Biol Trace Elem Res 170(2):432–437. https://doi.org/10.1007/s12011-015-0455-8

    Article  CAS  PubMed  Google Scholar 

  105. Saedisomeolia A, Makhdoomi Arzati M, Abdolahi M, Sedighiyan M, Rangel A, Muench G, Zarezadeh M, Jafarieh A, Mohammadzadeh Honarvar N (2019) Mechanisms of action of ginger in nuclear factor-kappaB signaling pathways in diabetes. J Herb Med 16:100239. https://doi.org/10.1016/j.hermed.2018.10.004

    Article  Google Scholar 

  106. Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306. https://doi.org/10.1016/j.neuropharm.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  107. Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25(22):5474. https://doi.org/10.3390/molecules25225474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, Yamamoto M (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7(1):11624. https://doi.org/10.1038/ncomms11624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim SO, Chun KS, Kundu JK, Surh YJ (2004) Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-κB and p38 MAPK in mouse skin. BioFactors 21(1–4):27–31. https://doi.org/10.1002/biof.552210107

    Article  PubMed  Google Scholar 

  110. Aktan F, Henness S, Tran VH, Duke CC, Roufogalis BD, Ammit AJ (2006) Gingerol metabolite and a synthetic analogue Capsarol™ inhibit macrophage NF-κB-mediated iNOS gene expression and enzyme activity. Planta Med 72(08):727–734. https://doi.org/10.1055/s-2006-931588

    Article  CAS  PubMed  Google Scholar 

  111. Fathi R, Akbari A, Nasiri K, Chardahcherik M (2021) Ginger (Zingiber officinale roscoe) extract could upregulate the renal expression of NRF2 and TNFα and prevents ethanol-induced toxicity in rat kidney. Avicenna J Phytomed 11(2):134–145

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pan M-H, Hsieh M-C, Hsu P-C, Ho S-Y, Lai C-S, Wu H, Sang S, Ho C-T (2008) 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol Nutr Food Res 52(12):1467–1477. https://doi.org/10.1002/mnfr.200700515

    Article  CAS  PubMed  Google Scholar 

  113. Dutta AK (2007) Experimental studies on the pathology of induced sodium arsenite toxicity in mice with special reference to estimation of intramuscular tD50. Indian J Vet Pathol 31(1):83. https://indianjournals.com/ijor.aspx?target=ijor:ijvp&volume=31&issue=1&article=abs006

  114. Javaria M, Khan A, Khan M, Saleemi M, Mahmood F (2013) Arsenic induced clinico-hemato-pathological alterations in broilers and its attenuation by vitamin E and selenium. Pak J Agric Sci 50(1):131–138

    Google Scholar 

  115. Islam MS, Awal MA, Mostofa M, Begum F, Myenuddin M (2013) Detection of arsenic in chickens and ducks. Int J Sci Res Manag 1(1):56–62

    Google Scholar 

  116. Cullen NM, Wolf LR, Clair DS (1995) Pediatric arsenic ingestion. Am J Emerg Med 13(4):432–435. https://doi.org/10.1016/0735-6757(95)90133-7

    Article  CAS  PubMed  Google Scholar 

  117. Roy S, Bhattacharya S (2006) Arsenic-induced histopathology and synthesis of stress proteins in liver and kidney of Channa punctatus. Ecotoxicol Environ Saf 65(2):218–229. https://doi.org/10.1016/j.ecoenv.2005.07.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors all wish to acknowledge the Central Avian Research Institute (Bhubaneswar, India) for providing the experimental animal site and ensuring the progress of the scientific experiment smoothly and acknowledge the College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology (Bhubaneswar, India) for experimental material assistance.

Funding

CARI funded this experiment with project number P-1/2017/1-IAV/L34/6200.

Author information

Authors and Affiliations

Authors

Contributions

Geeta Rani Jena, Dhirendra Kumar, Surya Kant Mishra, Bijaya Kumar Swain, Prafulla Kumar Naik, and Chandra Kant Beura designed the experiment; Ramesh Chandra Patra and Susen Kumar Panda provided helpful suggestions; statistical analysis of all data, original draft wrote, and modified were completed by Kamdev Sethy, and Santosh Kumar Panda conducted the animal feeding and the sample analysis; Bhagyalaxmi Panda participated in the sample collection.

Corresponding author

Correspondence to Santosh Kumar Panda.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S.K., Kumar, D., Jena, G.R. et al. Hepatorenal Toxicity of Inorganic Arsenic in White Pekin Ducks and Its Amelioration by Using Ginger. Biol Trace Elem Res 201, 2471–2490 (2023). https://doi.org/10.1007/s12011-022-03317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03317-0

Keywords

Navigation