Skip to main content
Log in

Cessation Restores Blood Pressure Levels and Endothelial Function Affected by Cadmium Exposure on Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic cadmium exposure produces high blood pressure and endothelial damage; however, it is not known whether these effects could be reversed by interrupting the exposure to the metal. Therefore, we evaluate the systolic blood pressure (SBP) and vascular reactivity during and following chronic cadmium-exposure discontinuance. Rats received 100 mg.L−1 cadmium chloride (CdCl2) in the drinking water or tap water (Ct) for 30 days and/or tap water for 30 days more. The cadmium plasma content, blood pressure and vascular reactivity of isolated aorta were evaluated. Cadmium exposure increased cadmium plasma content, SBP and aorta contractile responses to phenylephrine, all reversed after suspending exposure. Endothelial removal and nitric oxide synthase (NOS) inhibition increased phenylephrine response both on control and Cd-discontinuation models. Cd-discontinuation group presented increased CAMKII and PKA protein expression, as peNOSSer1177. Superoxide dismutase (SOD) incubation reduced contractile response on control group, and catalase incubation enhanced the response to phenylephrine in this group. Meanwhile, both SOD2 and catalase protein expression were increased in Cd-cessation rats. Our findings provide evidence that increased SBP and endothelial dysfunction induced by Cd chronic exposure are reversed by suspending the metal exposure probably due to an improvement of antioxidant enzymes and eNOS function.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

References

  1. Bottino F, Milan JAM, Cunha-Santino MB, Bianchini I (2017) Influence of the residue from an iron mining dam in the growth of two macrophyte species. Chemosphere 186:488–494. https://doi.org/10.1016/j.chemosphere.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization & International Programme on Chemical Safety (‎1992)‎ Cadmium : environmental aspects / published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. World Health Organization. https://apps.who.int/iris/handle/10665/39366

  3. ACGIH (2007) Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, p. 17

  4. Jurdziak M, Gać P, Poręba M et al (2018) Concentration of thyrotropic hormone in persons occupationally exposed to lead, cadmium and arsenic. Biol Trace Elem Res 182:196–203. https://doi.org/10.1007/s12011-017-1096-x

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Z, Lu Y-H, Pi H-F et al (2016) Cadmium exposure is associated with the prevalence of dyslipidemia. Cell Physiol Biochem 40:633–643. https://doi.org/10.1159/000452576

    Article  CAS  PubMed  Google Scholar 

  6. Hassler E, Lind B, Piscator M (1983) Cadmium in blood and urine related to present and past exposure. A study of workers in an alkaline battery factory. Br J Ind Med. https://doi.org/10.1136/oem.40.4.420

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roels H, Djubgang J, Buchet JP et al (1982) Evolution of cadmium-induced renal dysfunction in workers removed from exposure. Scand J Work Environ Health 8:191–200. https://doi.org/10.5271/sjweh.2476

    Article  CAS  PubMed  Google Scholar 

  8. Almenara CC, Broseghini-Filho GB, Vescovi MV, Angeli JK, Faria Tde O, Stefanon I, Vassallo DV, Padilha AS (2013) Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One 8(7):e68418. https://doi.org/10.1371/journal.pone.0068418

  9. Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E (2008) Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ Health Perspect. https://doi.org/10.1289/ehp.10764

    Article  PubMed  Google Scholar 

  10. Navas-Acien A, Selvin E, Sharrett AR et al (2004) Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation. https://doi.org/10.1161/01.CIR.0000130848.18636.B2

    Article  PubMed  Google Scholar 

  11. Tellez-Plaza M, Navas-Acien A, Menke A et al (2012) Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ Health Perspect. https://doi.org/10.1289/ehp.1104352

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fagerberg B, Barregard L, Sallsten G et al (2015) Cadmium exposure and atherosclerotic carotid plaques -results from the Malmö diet and cancer study. Environ Res 136:67–74. https://doi.org/10.1016/j.envres.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  13. Donpunha W, Kukongviriyapan U, Sompamit K et al (2011) Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 24:105–115. https://doi.org/10.1007/s10534-010-9379-0

    Article  CAS  PubMed  Google Scholar 

  14. Satarug S, Nishijo M, Ujjin P et al (2005) Cadmium-induced nephropathy in the development of high blood pressure. Toxicol Lett 157:57–68. https://doi.org/10.1016/j.toxlet.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  15. Almenara CCP, Oliveira TF, Padilha AS (2020) The role of antioxidants in the prevention of cadmium-induced endothelial dysfunction. Curr Pharm Des 26(30):3667–3675. https://doi.org/10.2174/1381612826666200415172338

  16. Kolluru GK, Tamilarasan KP, Geetha Priya S et al (2006) Cadmium induced endothelial dysfunction: consequence of defective migratory pattern of endothelial cells in association with poor nitric oxide availability under cadmium challenge. Cell Biol Int 30:427–438. https://doi.org/10.1016/j.cellbi.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  17. Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79:1493–1506. https://doi.org/10.1016/j.lfs.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  18. Angeli JK, Cruz Pereira CA, de Oliveira FT et al (2013) Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radic Biol Med 65:838–848. https://doi.org/10.1016/j.freeradbiomed.2013.08.167

    Article  CAS  PubMed  Google Scholar 

  19. Sompamit K, Kukongviriyapan U, Donpunha W et al (2010) Reversal of cadmium-induced vascular dysfunction and oxidative stress by meso-2,3-dimercaptosuccinic acid in mice. Toxicol Lett 198:77–82. https://doi.org/10.1016/j.toxlet.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  20. Wolf MB, Baynes JW (2007) Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 20:73–81. https://doi.org/10.1007/s10534-006-9016-0

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira TF, Batista PR, Leal MA, Campagnaro BP, Nogueira BV, Vassallo DV, Meyrelles SS, Padilha AS (2019) Chronic cadmium exposure accelerates the development of atherosclerosis and induces vascular dysfunction in the aorta of ApoE-/- Mice. Biol Trace Elem Res 187(1):163–171. https://doi.org/10.1007/s12011-018-1359-1

    Article  CAS  PubMed  Google Scholar 

  22. Tellez-Plaza M, Guallar E, Howard BV, Umans JG, Francesconi KA, Goessler W, Silbergeld EK, Devereux RB, Navas-Acien A (2013) Cadmium exposure and incident cardiovascular disease. Epidemiology 24(3):421–429. https://doi.org/10.1097/EDE.0b013e31828b0631

    Article  PubMed  PubMed Central  Google Scholar 

  23. Do EK, Lee MS, Paek D (2008) Cadmium in blood and hypertension. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2008.08.037

    Article  Google Scholar 

  24. Gökalp O, Ozdem S, Dönmez S et al (2009) Impairment of endothelium-dependent vasorelaxation in cadmium-hypertensive rats. Toxicol Ind Health 25:447–453. https://doi.org/10.1177/0748233709106822

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Fang J, Leonard SS, Rao KMK (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443. https://doi.org/10.1016/j.freeradbiomed.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  26. Macias-Barragan J, Huerta-Olvera SG, Hernandez-Cañaveral I et al (2017) Cadmium and α-lipoic acid activate similar de novo synthesis and recycling pathways for glutathione balance. Environ Toxicol Pharmacol 52:38–46. https://doi.org/10.1016/j.etap.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  27. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  CAS  PubMed  Google Scholar 

  28. Adi PJ, Burra SP, Vataparti AR, Matcha B (2016) Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats. Toxicol Rep 3:591–597. https://doi.org/10.1016/j.toxrep.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stroes E, Hijmering M, Van Zandvoort M et al (1998) Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett 438:161–164. https://doi.org/10.1016/S0014-5793(98)01292-7

    Article  CAS  PubMed  Google Scholar 

  30. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471. https://doi.org/10.1038/nrd3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones RJ, Jourd’heuil D, Salerno JC et al (2007) iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle. Am J Physiol - Hear Circ Physiol 292(6):H2634–H2642. https://doi.org/10.1152/ajpheart.01247.2006

  32. Li H, Li W, Gupta AK et al (2010) Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. Am J Physiol - Hear Circ Physiol 298(2):H688–H698. https://doi.org/10.1152/ajpheart.01014.2009

  33. Mercure MZ, Ginnan R, Singer HA (2008) CaM kinase IIδ2-dependent regulation of vascular smooth muscle cell polarization and migration. Am J Physiol - Cell Physiol 294(6):C1465–C1475. https://doi.org/10.1152/ajpcell.90638.2007

  34. Kim I, Je HD, Gallant C et al (2000) Ca2+-calmodulin-dependent protein kinase II-dependent activation of contractility in ferret aorta. J Physiol 526:367–374. https://doi.org/10.1111/j.1469-7793.2000.00367.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai H, Davis ME, Drummond GR, Harrison DG (2001) Induction of endothelial NO synthase by hydrogen peroxide via a Ca2+/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway. Arterioscler Thromb Vasc Biol 21:1571–1576. https://doi.org/10.1161/hq1001.097028

    Article  CAS  PubMed  Google Scholar 

  36. Boo YC, Sorescu G, Boyd N et al (2002) Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser 1179 by Akt-independent mechanisms. Role of protein kinase A. J Biol Chem 277:3388–3396. https://doi.org/10.1074/jbc.M108789200

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – Financing code 001, Alessandra Simão Padilha); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Alessandra Simão Padilha) and Fundação de Amparo à Pesquisa do Espírito Santo (FAPES – Grant 80600115, 2020-2TG4R (159/2020) Alessandra Simão Padilha and PROFIX 388/2018 Camila Almenara Cruz Pereira). The funders had no role in the study design, data collection, data analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and text review. Material preparation, animal care, and data collection were performed by Camila Almenara Cruz Pereira, Thiago Fernandes de Oliveira, David Chaves Felício da Silva and Maiara Krause. The data analysis was performed by Camila Almenara Cruz Pereira, Thiago Fernandes, Maria Tereza W. D. Carneiro and Alessandra S. Padilha. The first draft of the manuscript was written by Camila Almenara Cruz Pereira and Alessandra Simão Padilha, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Camila Cruz Pereira Almenara.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almenara, C.C.P., de Oliveira, T.F., da Silva, D.C.F. et al. Cessation Restores Blood Pressure Levels and Endothelial Function Affected by Cadmium Exposure on Rats. Biol Trace Elem Res 201, 1955–1964 (2023). https://doi.org/10.1007/s12011-022-03312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03312-5

Keywords

Navigation