Skip to main content
Log in

Effects of Long-Term Exposure to Copper on Mitochondria-Mediated Apoptosis in Pig Liver

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper (Cu) is listed as one of the main heavy metal pollutants, which poses potential health risks to humans. Excessive intake of Cu has shown toxic effects on the organs of many animals, and the liver is one of the most important organs to metabolize it. In this study, pigs, the mammal with similar metabolic characteristics to humans, were selected to assess the effects of long-term exposure to Cu on mitochondria-mediated apoptosis, which are of great significance for studying the toxicity of Cu to humans. Pigs were fed a diet with different contents of Cu (10, 125, and 250 mg/kg) for 80 days. Samples of blood and liver tissue were collected on days 40 and 80. Experimental results demonstrated that the accumulation of Cu in the liver was increased in a dose-dependent and time-dependent manner. Meanwhile, the curve of pig’s body weight showed that a 125 mg/kg Cu diet promoted the growth of pigs during the first 40 days and then inhibited it from 40 to 80 days, while the 250 mg/kg Cu diet inhibited the growth of pigs during 80 days of feeding. Additionally, the genes and protein expression levels of Caspase-3, p53, Bax, Bak1, Bid, Bad, CytC, and Drp1 in the treatment group were higher than that in the control group, while Bcl-2, Bcl-xL, Opa1, Mfn1, and Mfn2 were decreased. In conclusion, these results indicated that long-term excessive intake of Cu could inhibit the growth of pigs and induced mitochondria-mediated apoptosis by breaking the mitochondrial dynamic balance.

Graphical abstract

Synopsis: Long-term exposure to high doses of Cu could lead to mitochondrial dysfunction by breaking the mitochondrial dynamic balance, which ultimately induced mitochondria-mediated apoptosis in the liver of pigs. This might be closely related to the growth inhibition and liver damage in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim JH, Kang YJ (2016) The toxic effects on the stress and immune responses in juvenile rockfish, Sebastes schlegelii exposed to hexavalent chromium. Environ Toxicol Pharmacol 43:128–133

    Article  CAS  PubMed  Google Scholar 

  2. Mondal C, Ganguly M, Pal J, Roy A, Jana J, Pal T (2014) Morphology controlled synthesis of SnS 2 nanomaterial for promoting photocatalytic reduction of aqueous Cr (VI) under visible light. Langmuir 30:4157–4164

    Article  CAS  PubMed  Google Scholar 

  3. US-EPA, 2014. United States Environmental Protection Agency. Effluent guidelines: toxic and priority pollutants under the Clean Water Act (Priority Pollutants, 40 CFR Part 423, Appendix A)

  4. WHO, 2020. The WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 Edition. World Health Organization, Geneva, 2020. Licence: CC BY-NC-SA 3.0 IGO.

  5. Vetlényi E, Rácz G (2020) The physiological function of copper, the etiological role of copper excess and deficiency. Orv Hetil 161:1488–1496

    Article  PubMed  Google Scholar 

  6. Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J (2014) Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production. Cell Biochem Biophys 70:367–381

    Article  CAS  PubMed  Google Scholar 

  7. Li S, Zhao H, Wang Y, Shao Y, Li J, Liu J et al (2017) The inflammatory responses in Cu-mediated elemental imbalance is associated with mitochondrial fission and intrinsic apoptosis in Gallus gallus heart. Chemosphere 189:489–497

    Article  CAS  PubMed  Google Scholar 

  8. Puchkova LV, Skvortsov AN, Rusconi P, Ilyechova EY, Broggini M (2016) In vivo effect of copper status on cisplatin-induced nephrotoxicity. Biometals 29:841–849

    Article  CAS  PubMed  Google Scholar 

  9. Lei C, Liao J, Li Q, Shi J, Zhang H, Guo J et al (2021) Copper induces mitochondria-mediated apoptosis via ampk-mtor pathway in hypothalamus of pigs. Ecotoxicol Environ Saf 220:112395

    Article  CAS  PubMed  Google Scholar 

  10. Liao J, Yang F, Bai Y, Yu W, Qiao N, Han Q et al (2021) Metabolomics analysis reveals the effects of copper on mitochondria-mediated apoptosis in kidney of broiler chicken (Gallus gallus). J Inorg Biochem 224:111581

    Article  CAS  PubMed  Google Scholar 

  11. Liao J, Yang F, Chen H, Yu W, Han Q, Li Y et al (2019) Effects of copper on oxidative stress and autophagy in hypothalamus of broilers. Ecotoxicol Environ Saf 185:109710

    Article  CAS  PubMed  Google Scholar 

  12. Li Q, Liao J, Lei C, Shi J, Zhang H, Han Q et al (2021) Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs. Ecotoxicol Environ Saf 213:112040

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Cao H, Fang Y, Bai H, Chen J, Xing C et al (2022) Activation of endoplasmic reticulum-mitochondria coupling drives copper-induced autophagy in duck renal tubular epithelial cells. Ecotoxicol Environ Saf 235:113438

    Article  CAS  PubMed  Google Scholar 

  14. Liao J, Li Q, Hu Z, Yu W, Zhang K, Ma F, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z (2022) Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells. J Hazard Mater 422:126899

    Article  Google Scholar 

  15. Wen Y, Li R, Piao X, Lin G, He P (2021) Different copper sources and levels affect growth performance, copper content, carcass characteristics, intestinal microorganism and metabolism of finishing pigs. Sciencedirect 8(1):321–330

    Google Scholar 

  16. Nowak KL, Edelstein CL (2020) Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 68:109518

    Article  CAS  PubMed  Google Scholar 

  17. Obeng E (2020) Apoptosis (programmed cell death) and its signals - a review. Braz J Biol 81(4):1133–1143

    Article  Google Scholar 

  18. Bock FJ, Tait S (2019) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100

    Article  PubMed  Google Scholar 

  19. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A et al (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 98:139–153

    Article  CAS  PubMed  Google Scholar 

  20. Sheridan C, Martin SJ (2010) Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 10:640–648

    Article  CAS  PubMed  Google Scholar 

  21. Dietz JV, Bohovych I, Viana MP, Khalimonchuk O (2019) Proteolytic regulation of mitochondrial dynamics. Mitochondrion 49:289–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan S, Raj D, Jaiswal K, Lahiri A (2020) Modulation of host mitochondrial dynamics during bacterial infection. Mitochondrion 53:140–149

    Article  CAS  PubMed  Google Scholar 

  23. Cui G, Li Y, Ding K, Hao S, Wang J, Zhang Z (2017) Attribution of Bax and mitochondrial permeability transition pore on cantharidin-induced apoptosis of Sf9 cells. Pestic Biochem Phys 142:91–101

    Article  CAS  Google Scholar 

  24. Liu H, Guo H, Jian Z, Cui H, Fang J, Zuo Z et al (2020) Copper induces oxidative stress and apoptosis in the mouse liver. Oxid Med Cell Longev 2020:1359164

    PubMed  PubMed Central  Google Scholar 

  25. Wang T, Wen X, Hu Y, Zhang X, Wang D, Yin S (2019) Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish Shellfish Immunol 84:648–655

    Article  CAS  PubMed  Google Scholar 

  26. Wang K (2015) Autophagy and apoptosis in liver injury. Cell Cycle 14(11):1631–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adeyemi JA, Machado ART, Ogunjimi AT, Alberici LC, Antunes LMG, Barbosa F (2020) Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles. Ecotoxicol Environ Saf 189:109982

    Article  CAS  PubMed  Google Scholar 

  28. Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ojano-Dirain CP, Iqbal M, Cawthon D, Swonger S, Wing T, Cooper M, Bottje W (2004) Determination of mitochondrial function and site-specific defects in electron transport in duodenal mitochondria in broilers with low and high feed efficiency. Poultry Science 83(8):1394–1403. https://doi.org/10.1093/ps/83.8.1394

    Article  CAS  PubMed  Google Scholar 

  30. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C (2020) The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch Eur J Physiol 472:1415–1429

    Article  CAS  Google Scholar 

  32. Kim M, Cho JH, Seong PN, Jung H, Jeong JY, Kim S et al (2021) Fecal microbiome shifts by different forms of copper supplementations in growing pigs. J Anim Sci Technol 63(6):1386–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding H, Zhang Q, Xu H, Yu X, Feng J (2021) Selection of copper and zinc dosages in pig diets based on the mutual benefit of animal growth and environmental protection. Ecotoxicol Environ Saf 216:112177

    Article  CAS  PubMed  Google Scholar 

  34. Valenzuela C, Romaña DLD, Schmiede C, Morales MS, Olivares M, Pizarro F (2011) Total iron, heme iron, zinc, and copper content in rabbit meat and viscera. Biol Trace Elem Res 143:1489–1496

    Article  CAS  PubMed  Google Scholar 

  35. Lada E, Anna M, Patrik M, Zbynek T, Miroslav J, Hynek M et al (2020) Porcine liver anatomy applied to biomedicine. J Surg Res 250:70–79

    Article  CAS  PubMed  Google Scholar 

  36. Pabst R (2020) The pig as a model for immunology research. Cell Tissue Res 380(2):287–304

    Article  PubMed  PubMed Central  Google Scholar 

  37. Camacho P, Fan H, Liu Z, He JQ (2016) Large mammalian animal models of heart disease. J Cardiovas Dev Dis 3(4):30

    Google Scholar 

  38. Schelstraete W, Devreese M, Croubels S (2020) Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem Toxicol 137:111140

    Article  CAS  PubMed  Google Scholar 

  39. Balogun SO, da Silva Jr IF, Colodel EM, de Oliveira RG, Ascêncio SD, Martins DT (2014) Toxicological evaluation of hydroethanolic extract of Helicteres sacarolha A. St.- Hil. et al. J Ethnopharmacol. 157:285–291

    Article  PubMed  Google Scholar 

  40. Leong YH, Isa A, Mohamed Mahmood M, Moey C, Utar Z, Soon YI, Majid M (2018) Acute and repeated dose 28-day oral toxicity of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) nanoparticles in Sprague-Dawley rats. Regul Toxicol Pharmacol 95:280–288

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Wang N, Pan D, Zhang H, Sun G et al (2021) Effects of copper supplementation on blood lipid level: a systematic review and a meta-analysis on randomized clinical trials. Biol Trace Elem Res 199:2851–2857

    Article  CAS  PubMed  Google Scholar 

  42. Zhou J, Liu C, Francis M, Sun Y, Ryu MS, Grider A et al (2020) The causal effects of blood iron and copper on lipid metabolism diseases: evidence from phenome-wide Mendelian randomization study. Nutrients 12:3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu X, Cui H, Gao X, Yang F (2015) Effects of dietary copper on elemental balance, plasma minerals and serum biochemical parameters of growing-furring male mink (Mustela vison). Anim Nutr 1:36–40

    Article  PubMed  PubMed Central  Google Scholar 

  44. Araya M, Núñez H, Pavez L, Arredondo M, Méndez M, Cisternas F et al (2012) Administration of high doses of copper to capuchin monkeys does not cause liver damage but induces transcriptional activation of hepatic proliferative responses. J Nutr 142:233–237

    Article  CAS  PubMed  Google Scholar 

  45. Araya M, Kelleher SL, Arredondo MA, Sierralta W, Vial MT, Uauy R et al (2005) Effects of chronic copper exposure during early life in rhesus monkeys. Am J Clin Nutr 81:1065–1071

    Article  CAS  PubMed  Google Scholar 

  46. Qinna NA, Ghanim BY (2019) Chemical induction of hepatic apoptosis in rodents. J Appl Toxicol 39(2):178–190

    Article  CAS  PubMed  Google Scholar 

  47. Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N et al (2019) Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol in Vitro 54:310–316

    Article  CAS  PubMed  Google Scholar 

  48. Zhang H, Chang Z, Mehmood K, Abbas RZ, Nabi F, Rehman MU et al (2018) Nano copper induces apoptosis in PK-15 cells via a mitochondria-mediated pathway. Biol Trace Elem Res 181:62–70

    Article  CAS  PubMed  Google Scholar 

  49. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98(2):813–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang C, Nie G, Yang F, Chen J, Zhuang Y, Dai X et al (2020) Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells. J Hazard Mater 383:121157

    Article  CAS  PubMed  Google Scholar 

  51. Dhanraj P, Venter C, Bester MJ, Oberholzer HM (2020) Induction of hepatic portal fibrosis, mitochondria damage, and extracellular vesicle formation in Sprague-Dawley rats exposed to copper, manganese, and mercury, alone and in combination. Ultrastruct Pathol 44(2):182–192

    Article  CAS  PubMed  Google Scholar 

  52. Fei D, Zhao H, Wang Y, Liu J, Mu M, Guo M et al (2019) The disturbance of autophagy and apoptosis in the gizzard caused by copper and/or arsenic are related to mitochondrial kinetics. Chemosphere 231:1–9

    Article  CAS  PubMed  Google Scholar 

  53. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192

    Article  CAS  PubMed  Google Scholar 

  54. Zhao Y, Cui JG, Zhang H, Li XN, Li MZ, Talukder M et al (2021) Role of mitochondria-endoplasmic reticulum coupling in lycopene preventing DEHP-induced hepatotoxicity. Food Funct 12(21):10741–10749

    Article  CAS  PubMed  Google Scholar 

  55. Adebayo M, Singh S, Singh AP, Dasgupta S (2021) Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis. FASEB J 35(6):e21620

    Article  CAS  PubMed  Google Scholar 

  56. Wang GW, Lvj C, Shi ZR, Zeng RT, Dong XY, Zhang WD et al (2014) Abieslactone induces cell cycle arrest and apoptosis in human hepatocellular carcinomas through the mitochondrial pathway and the generation of reactive oxygen species. PLoS ONE 9:e115151

    Article  PubMed  PubMed Central  Google Scholar 

  57. Prenek L, Boldizsár F, Kugyelka R, Ugor E, Berta G, Németh P et al (2017) The regulation of the mitochondrial apoptotic pathway by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells. Apoptosis 22:239–253

    Article  CAS  PubMed  Google Scholar 

  58. Kureel J, John AA, Raghuvanshi A, Awasthi P, Goel A, Singh D (2016) Identification of GRP78 as a molecular target of medicarpin in osteoblast cells by proteomics. Mol Cell Biochem 418:71–80

    Article  CAS  PubMed  Google Scholar 

  59. Delre D, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–1817

    Article  CAS  Google Scholar 

  60. Ma ZJ, Lu L, Yang JJ, Wang XX, Su G, Wang ZL et al (2018) Lariciresinol induces apoptosis in hepg2 cells via mitochondrial-mediated apoptosis pathway. Eur J Pharmacol 821:1–10

    Article  CAS  PubMed  Google Scholar 

  61. Ranjan A, Iwakuma T (2016) Non-canonical cell death induced by p53. Int J Mol Sci 17:2068

    Article  PubMed  PubMed Central  Google Scholar 

  62. Frión-Herrera Y, Díaz-García A, Ruiz-Fuentes J, Rodríguez-Sánchez H, Sforcin JM (2015) Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway. J Pharm Pharmacol 67(10):1448–1456

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 32072930 and 31572585) and the National Key R & D Program of China (No. 2016YFD0501205 and 2017YFD0502200).

Author information

Authors and Affiliations

Authors

Contributions

Zhaoxin Tang: conceptualization; methodology; supervision; project administration; funding acquisition. Zhuoying Hu: conceptualization; methodology; formal analysis; investigation; visualization; writing — original draft. Jianzhao Liao: data curation; formal analysis; investigation; writing — review and editing. Kai Zhang: data curation; formal analysis; software; methodology. Kunxuan Huang: investigation; writing — review and editing. Quanwei Li: supervision. Chaiqin Lei: writing — review and editing. Qingyue Han: investigation. Hui Zhang: visualization. Jianying Guo: methodology. Lianmei Hu: writing — review and editing; resources. Jiaqiang Pan: methodology. Ying Li: resources.

Corresponding author

Correspondence to Zhaoxin Tang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhuoying Hu and Jianzhao Liao share the first authorship

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Liao, J., Zhang, K. et al. Effects of Long-Term Exposure to Copper on Mitochondria-Mediated Apoptosis in Pig Liver. Biol Trace Elem Res 201, 1726–1739 (2023). https://doi.org/10.1007/s12011-022-03303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03303-6

Keywords

Navigation