Skip to main content

Advertisement

Log in

The molecular mechanisms of copper metabolism and its roles in human diseases

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Copper is an essential element in cells; it can act as either a recipient or a donor of electrons, participating in various reactions. However, an excess of copper ions in cells is detrimental as these copper ions can generate free radicals and increase oxidative stress. In multicellular organisms, copper metabolism involves uptake, distribution, sequestration, and excretion, at both the cellular and systemic levels. Mammalian enterocytes take in bioavailable copper ions from the diet in a Ctr1-dependent manner. After incorporation, cuprous ions are delivered to ATP7A, which pumps Cu+ from enterocytes into the blood. Copper ions arrive at the liver through the portal vein and are incorporated into hepatocytes by Ctr1. Then, Cu+ can be secreted into the bile or the blood via the Atox1/ATP7B/ceruloplasmin route. In the bloodstream, this micronutrient can reach peripheral tissues and is again incorporated by Ctr1. In peripheral tissue cells, cuprous ions are either sequestrated by molecules such as metallothioneins or targeted to utilization pathways by chaperons such as Atox1, Cox17, and CCS. Copper metabolism must be tightly controlled in order to achieve homeostasis and avoid disorders. A hereditary or acquired copper unbalance, including deficiency, overload, or misdistribution, may cause or aggravate certain diseases such as Menkes disease, Wilson disease, neurodegenerative diseases, anemia, metabolic syndrome, cardiovascular diseases, and cancer. A full understanding of copper metabolism and its roles in diseases underlies the identification of novel effective therapies for such diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acevedo K, Masaldan S, Opazo CM, Bush AI (2019) Redox active metals in neurodegenerative diseases. J Biol Inorg Chem 24:1141–1157

    Article  CAS  PubMed  Google Scholar 

  2. Aigner E, Strasser M, Haufe H, Sonnweber T, Hohla F, Stadlmayr A, Solioz M, Tilg H, Patsch W, Weiss G, Stickel F, Datz C (2010) A role for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am J Gastroenterol 105:1978–1985

    Article  CAS  PubMed  Google Scholar 

  3. Angeletti B, Waldron KJ, Freeman KB, Bawagan H, Hussain I, Miller CC, Lau KF, Tennant ME, Dennison C, Robinson NJ, Dingwall C (2005) BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copper. J Biol Chem 280:17930–17937

    Article  CAS  PubMed  Google Scholar 

  4. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem 75:1219–1233

    Article  CAS  PubMed  Google Scholar 

  5. Barry AN, Shinde U, Lutsenko S (2010) Structural organization of human Cu-transporting ATPases: learning from building blocks. J Biol Inorg Chem 15:47–59

    Article  CAS  PubMed  Google Scholar 

  6. Becuwe C, Dalle S, Ronger-Savle S, Skowron F, Balme B, Kanitakis J, Thomas L (2005) Elastosis perforans serpiginosa associated with pseudo-pseudoxanthoma elasticum during treatment of Wilson’s disease with penicillamine. Dermatology 210:60–63

    Article  PubMed  Google Scholar 

  7. Bhattacharjee A, Chakraborty K, Shukla A (2017) Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics 9:1376–1388

    Article  CAS  PubMed  Google Scholar 

  8. Blaby-Haas CE, Merchant SS (2014) Lysosome-related organelles as mediators of metal homeostasis. J Biol Chem 289:28129–28136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boullata J, Muthukumaran G, Piarulli A, Labarre J, Compher C (2017) Oral copper absorption in men with morbid obesity. J Trace Elem Med Biol 44:146–150

    Article  CAS  PubMed  Google Scholar 

  10. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ, Counter CM (2014) Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509:492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S, Ross BM, Mekios C, Scheinberg IH, Gilliam TC (1999) Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 8:1665–1671

    Article  CAS  PubMed  Google Scholar 

  12. Bush AI, Curtain CC (2008) Twenty years of metallo-neurobiology: where to now? Eur Biophys J 37:241–245

    Article  CAS  PubMed  Google Scholar 

  13. Calvo J, Jung H, Meloni G (2017) Copper metallothioneins. IUBMB Life 69:236–245. https://doi.org/10.1002/iub.1618

    Article  CAS  PubMed  Google Scholar 

  14. Cameron NE, Cotter MA (1995) Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest 96:1159–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chambers A, Krewski D, Birkett N, Plunkett L, Hertzberg R, Danzeisen R, Aggett PJ, Starr TB, Baker S, Dourson M, Jones P, Keen CL, Meek B, Schoeny R, Slob W (2010) An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev 13:546–578

    Article  CAS  PubMed  Google Scholar 

  16. Chen GF, Sudhahar V, Youn SW, Das A, Cho J, Kamiya T, Urao N, McKinney RD, Surenkhuu B, Hamakubo T, Iwanari H, Li S, Christman JW, Shantikumar S, Angelini GD, Emanueli C, Ushio-Fukai M, Fukai T (2015) Copper transport protein antioxidant-1 promotes inflammatory neovascularization via chaperone and transcription factor function. Sci Rep 5:14780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  18. Cherukuri S, Tripoulas NA, Nurko S, Fox PL (2004) Anemia and impaired stress-induced erythropoiesis in aceruloplasminemic mice. Blood Cells Mol Dis 33:346–355

    Article  CAS  PubMed  Google Scholar 

  19. Choi EH, Strum W (2010) Hypocupremia-related myeloneuropathy following gastrojejunal bypass surgery. Ann Nutr Metab 57:190–192

    Article  CAS  PubMed  Google Scholar 

  20. Chojnacka M, Gornicka A, Oeljeklaus S, Warscheid B, Chacinska A (2015) Cox17 Protein is an auxiliary factor involved in the control of the mitochondrial contact site and cristae organizing system. J Biol Chem 290:15304–15312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choo XY, Liddell JR, Huuskonen MT, Grubman A, Moujalled D, Roberts J, Kysenius K, Patten L, Quek H, Oikari LE, Duncan C, James SA, McInnes LE, Hayne DJ, Donnelly PS, Pollari E, Vahatalo S, Lejavova K, Kettunen MI, Malm T, Koistinaho J, White AR, Kanninen KM (2018) Cu(II)(atsm) attenuates neuroinflammation. Front Neurosci 12:668

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cooper GJ, Phillips AR, Choong SY, Leonard BL, Crossman DJ, Brunton DH, Saafi L, Dissanayake AM, Cowan BR, Young AA, Occleshaw CJ, Chan YK, Leahy FE, Keogh GF, Gamble GD, Allen GR, Pope AJ, Boyd PD, Poppitt SD, Borg TK, Doughty RN, Baker JR (2004) Regeneration of the heart in diabetes by selective copper chelation. Diabetes 53:2501–2508

    Article  CAS  PubMed  Google Scholar 

  23. Cooper GJ, Young AA, Gamble GD, Occleshaw CJ, Dissanayake AM, Cowan BR, Brunton DH, Baker JR, Phillips AR, Frampton CM, Poppitt SD, Doughty RN (2009) A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study. Diabetologia 52:715–722

    Article  CAS  PubMed  Google Scholar 

  24. Coronado V, Nanji M, Cox DW (2001) The Jackson toxic milk mouse as a model for copper loading. Mamm Genome 12:793–795

    Article  CAS  PubMed  Google Scholar 

  25. Cosimo QC, Daniela L, Elsa B, Carlo DV, Giuseppe F (2011) Kinky hair, kinky vessels, and bladder diverticula in Menkes disease. J Neuroimaging 21:e114–e116

    Article  PubMed  Google Scholar 

  26. Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309

    Article  CAS  PubMed  Google Scholar 

  27. Cox DW, Moore SD (2002) Copper transporting P-type ATPases and human disease. J Bioenerg Biomembr 34:333–338

    Article  CAS  PubMed  Google Scholar 

  28. Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G, Perez KA, Nurjono M, Caragounis A, Du T, Laughton K, Volitakis I, Bush AI, Li QX, Masters CL, Cappai R, Cherny RA, Donnelly PS, White AR, Barnham KJ (2009) Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci U S A 106:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Czlonkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML (2018) Wilson disease. Nat Rev Dis Primers 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  30. De Freitas J, Wintz H, Kim JH, Poynton H, Fox T, Vulpe C (2003) Yeast, a model organism for iron and copper metabolism studies. Biometals 16:185–197

    Article  PubMed  Google Scholar 

  31. Deutscher J, Kiess W, Scheerschmidt G, Willgerodt H (1999) Potential hepatotoxicity of penicillamine treatment in three patients with Wilson’s disease. J Pediatr Gastroenterol Nutr 29:628. https://doi.org/10.1097/00005176-199911000-00031

    Article  CAS  PubMed  Google Scholar 

  32. Eid C, Hemadi M, Ha-Duong NT, El Hage Chahine JM (2014) Iron uptake and transfer from ceruloplasmin to transferrin. Biochim Biophys Acta 1840:1771–1781

    Article  CAS  PubMed  Google Scholar 

  33. Eipper BA, Stoffers DA, Mains RE (1992) The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci 15:57–85

    Article  CAS  PubMed  Google Scholar 

  34. Eisses JF, Chi Y, Kaplan JH (2005) Stable plasma membrane levels of hCTR1 mediate cellular copper uptake. J Biol Chem 280:9635–9639

    Article  CAS  PubMed  Google Scholar 

  35. Engle TE (2011) Copper and lipid metabolism in beef cattle: a review. J Anim Sci 89:591–596

    Article  CAS  PubMed  Google Scholar 

  36. Failla ML, Kiser RA (1981) Altered tissue content and cytosol distribution of trace metals in experimental diabetes. J Nutr 111:1900–1909

    Article  CAS  PubMed  Google Scholar 

  37. Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F, Olopade OI, Glesne D (2007) X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci U S A 104:2247–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fleming CR, Hodges RE, Hurley LS (1976) A prospective study of serum copper and zinc levels in patients receiving total parenteral nutrition. Am J Clin Nutr 29:70–77

    Article  CAS  PubMed  Google Scholar 

  40. Foretz M, Guigas B, Viollet B (2019) Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 15:569–589

    Article  CAS  PubMed  Google Scholar 

  41. Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, Volitakis I, Cherny RA, Bush AI, Hersch S (2007) Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One 2:e334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    CAS  PubMed  Google Scholar 

  43. Fukai T, Ushio-Fukai M, Kaplan JH (2018) Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Phys Cell Phys 315:C186–C201. https://doi.org/10.1152/ajpcell.00132.2018

    Article  CAS  Google Scholar 

  44. Gacheru S, McGee C, Uriu-Hare JY, Kosonen T, Packman S, Tinker D, Krawetz SA, Reiser K, Keen CL, Rucker RB (1993) Expression and accumulation of lysyl oxidase, elastin, and type I procollagen in human Menkes and mottled mouse fibroblasts. Arch Biochem Biophys 301:325–329

    Article  CAS  PubMed  Google Scholar 

  45. Genoud S, Roberts BR, Gunn AP, Halliday GM, Lewis SJG, Ball HJ, Hare DJ, Double KL (2017) Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain. Metallomics 9:1447–1455

    Article  CAS  PubMed  Google Scholar 

  46. Godwin SC, Shawker T, Chang B, Kaler SG (2006) Brachial artery aneurysms in Menkes disease. J Pediatr 149:412–415

    Article  PubMed  Google Scholar 

  47. Goldstein DS, Holmes CS, Kaler SG (2009) Relative efficiencies of plasma catechol levels and ratios for neonatal diagnosis of menkes disease. Neurochem Res 34:1464–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gong D, Lu J, Chen X, Reddy S, Crossman DJ, Glyn-Jones S, Choong YS, Kennedy J, Barry B, Zhang S, Chan YK, Ruggiero K, Phillips AR, Cooper GJ (2008) A copper(II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-beta activation in the kidneys of rats used as a model of diabetes. Diabetologia 51:1741–1751

    Article  CAS  PubMed  Google Scholar 

  49. Graham SF, Nasaruddin MB, Carey M, Holscher C, McGuinness B, Kehoe PG, Love S, Passmore P, Elliott CT, Meharg AA, Green BD (2014) Age-associated changes of brain copper, iron, and zinc in Alzheimer’s disease and dementia with Lewy bodies. J Alzheimers Dis 42:1407–1413

    Article  CAS  PubMed  Google Scholar 

  50. Grimes A, Hearn CJ, Lockhart P, Newgreen DF, Mercer JF (1997) Molecular basis of the brindled mouse mutant (Mo(br)): a murine model of Menkes disease. Hum Mol Genet 6:1037–1042

    Article  CAS  PubMed  Google Scholar 

  51. Grochowski C, Blicharska E, Baj J, Mierzwinska A, Brzozowska K, Forma A, Maciejewski R (2019) Serum iron, magnesium, copper, and manganese levels in alcoholism: a systematic review. Molecules 24

  52. Grossi C, Francese S, Casini A, Rosi MC, Luccarini I, Fiorentini A, Gabbiani C, Messori L, Moneti G, Casamenti F (2009) Clioquinol decreases amyloid-beta burden and reduces working memory impairment in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 17:423–440

    Article  CAS  PubMed  Google Scholar 

  53. Gualandi F, Sette E, Fortunato F, Bigoni S, De Grandis D, Scotton C, Selvatici R, Neri M, Incensi A, Liguori R, Storbeck M, Karakaya M, Simioni V, Squarzoni S, Timmerman V, Wirth B, Donadio V, Tugnoli V, Ferlini A (2019) Report of a novel ATP7A mutation causing distal motor neuropathy. Neuromuscul Disord 29:776–785

    Article  PubMed  Google Scholar 

  54. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142

    Article  CAS  PubMed  Google Scholar 

  55. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46

    Article  CAS  PubMed  Google Scholar 

  56. Ha C, Ryu J, Park CB (2007) Metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochemistry 46:6118–6125

    Article  CAS  PubMed  Google Scholar 

  57. Haddad MR, Patel KD, Sullivan PH, Goldstein DS, Murphy KM, Centeno JA, Kaler SG (2014) Molecular and biochemical characterization of Mottled-dappled, an embryonic lethal Menkes disease mouse model. Mol Genet Metab 113:294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD (2001) The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci U S A 98:6848–6852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hansel DE, May V, Eipper BA, Ronnett GV (2001) Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci 21:4625–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harris ED (2004) A requirement for copper in angiogenesis. Nutr Rev 62:60–64. https://doi.org/10.1111/j.1753-4887.2004.tb00025.x

    Article  PubMed  Google Scholar 

  61. Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 96:10812–10817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hermann W (2019) Classification and differential diagnosis of Wilson’s disease. Ann Transl Med 7:S63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hill GM, Brewer GJ, Prasad AS, Hydrick CR, Hartmann DE (1987) Treatment of Wilson’s disease with zinc. I. Oral zinc therapy regimens. Hepatology 7:522–528

    Article  CAS  PubMed  Google Scholar 

  64. Hodgkinson VL, Dale JM, Garcia ML, Weisman GA, Lee J, Gitlin JD, Petris MJ (2015) X-linked spinal muscular atrophy in mice caused by autonomous loss of ATP7A in the motor neuron. J Pathol 236:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huster D, Finegold MJ, Morgan CT, Burkhead JL, Nixon R, Vanderwerf SM, Gilliam CT, Lutsenko S (2006) Consequences of copper accumulation in the livers of the Atp7b-/- (Wilson disease gene) knockout mice. Am J Pathol 168:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci U S A 110:19507–19512. https://doi.org/10.1073/pnas.1318431110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Itoh S, Kim HW, Nakagawa O, Ozumi K, Lessner SM, Aoki H, Akram K, McKinney RD, Ushio-Fukai M, Fukai T (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jeremy JY, Shukla N, Angelini GD, Day A, Wan IY, Talpahewa SP, Ascione R (2002) Sustained increases of plasma homocysteine, copper, and serum ceruloplasmin after coronary artery bypass grafting. Ann Thorac Surg 74:1553–1557. https://doi.org/10.1016/s0003-4975(02)03807-9

    Article  PubMed  Google Scholar 

  69. Jiang Y, Reynolds C, Xiao C, Feng W, Zhou Z, Rodriguez W, Tyagi SC, Eaton JW, Saari JT, Kang YJ (2007) Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J Exp Med 204:657–666. https://doi.org/10.1084/jem.20061943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Juarez-Rebollar D, Rios C, Nava-Ruiz C, Mendez-Armenta M (2017) Metallothionein in brain disorders. Oxidative Med Cell Longev 2017:5828056

    Article  CAS  Google Scholar 

  71. Kaler SG (1994) Menkes disease. Adv Pediatr Infect Dis 41:263–304

    CAS  Google Scholar 

  72. Kaler SG (1996) Menkes disease mutations and response to early copper histidine treatment. Nat Genet 13:21–22

    Article  CAS  PubMed  Google Scholar 

  73. Kaler SG (2011) ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 7:15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, Liew CJ, Sato S, Patronas N (2008) Neonatal diagnosis and treatment of Menkes disease. N Engl J Med 358:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kamiya T, Takeuchi K, Fukudome S, Hara H, Adachi T (2018) Copper chaperone antioxidant-1, Atox-1, is involved in the induction of SOD3 in THP-1 cells. Biometals 31:61–68. https://doi.org/10.1007/s10534-017-0067-1

    Article  CAS  PubMed  Google Scholar 

  76. Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JF, Tang J, Llanos RM, Chu S, Takata RI, Speck-Martins CE, Baets J, Almeida-Souza L, Fischer D, Timmerman V, Taylor PE, Scherer SS, Ferguson TA, Bird TD, De Jonghe P, Feely SM, Shy ME, Garbern JY (2010) Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet 86:343–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ (2010) Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab 11:353–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klevay LM (2000) Cardiovascular disease from copper deficiency—a history. J Nutr 130:489S–492S. https://doi.org/10.1093/jn/130.2.489S

  79. Krishnamoorthy L, Cotruvo JA Jr, Chan J, Kaluarachchi H, Muchenditsi A, Pendyala VS, Jia S, Aron AT, Ackerman CM, Wal MN, Guan T, Smaga LP, Farhi SL, New EJ, Lutsenko S, Chang CJ (2016) Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol 12:586–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuo YM, Zhou B, Cosco D, Gitschier J (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A 98:6836–6841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. La Fontaine S, Theophilos MB, Firth SD, Gould R, Parton RG, Mercer JF (2001) Effect of the toxic milk mutation (tx) on the function and intracellular localization of Wnd, the murine homologue of the Wilson copper ATPase. Hum Mol Genet 10:361–370

    Article  PubMed  Google Scholar 

  82. Lamb DJ, Avades TY, Ferns GA (2001) Biphasic modulation of atherosclerosis induced by graded dietary copper supplementation in the cholesterol-fed rabbit. Int J Exp Pathol 82:287–294. https://doi.org/10.1046/j.1365-2613.2001.00200.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lamb DJ, Mitchinson MJ, Leake DS (1995) Transition metal ions within human atherosclerotic lesions can catalyse the oxidation of low density lipoprotein by macrophages. FEBS Lett 374:12–16. https://doi.org/10.1016/0014-5793(95)01068-p

    Article  CAS  PubMed  Google Scholar 

  84. Landriscina M, Bagala C, Mandinova A, Soldi R, Micucci I, Bellum S, Prudovsky I, Maciag T (2001) Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem 276:25549–25557. https://doi.org/10.1074/jbc.M102925200

    Article  CAS  PubMed  Google Scholar 

  85. Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 98:6842–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Levenson CW (1998) Mechanisms of copper conservation in organs. Am J Clin Nutr 67:978S–981S

    Article  CAS  PubMed  Google Scholar 

  87. Levenson CW, Janghorbani M (1994) Long-term measurement of organ copper turnover in rats by continuous feeding of a stable isotope. Anal Biochem 221:243–249

    Article  CAS  PubMed  Google Scholar 

  88. Levinson B, Packman S, Gitschier J (1997) Deletion of the promoter region in the Atp7a gene of the mottled dappled mouse. Nat Genet 16:224–225

    Article  CAS  PubMed  Google Scholar 

  89. Li C, Wang J, Zhou B (2010) The metal chelating and chaperoning effects of clioquinol: insights from yeast studies. J Alzheimers Dis 21:1249–1262

    Article  CAS  PubMed  Google Scholar 

  90. Linder MC (2016) Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 8:887–905

    Article  CAS  PubMed  Google Scholar 

  91. Litwin T, Dziezyc K, Czlonkowska A (2019) Wilson disease-treatment perspectives. Ann Transl Med 7:S68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C, Gordon FJ, Harrison DG (2010) Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 55:277–283, 276p following 283. https://doi.org/10.1161/HYPERTENSIONAHA.109.142646

    Article  CAS  PubMed  Google Scholar 

  93. Lob HE, Vinh A, Li L, Blinder Y, Offermanns S, Harrison DG (2011) Role of vascular extracellular superoxide dismutase in hypertension. Hypertension 58:232–239. https://doi.org/10.1161/HYPERTENSIONAHA.111.172718

    Article  CAS  PubMed  Google Scholar 

  94. Lowndes SA, Harris AL (2005) The role of copper in tumour angiogenesis. J Mammary Gland Biol Neoplasia 10:299–310. https://doi.org/10.1007/s10911-006-9003-7

    Article  PubMed  Google Scholar 

  95. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  96. Malinouski M, Hasan NM, Zhang Y, Seravalli J, Lin J, Avanesov A, Lutsenko S, Gladyshev VN (2014) Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism. Nat Commun 5:3301. https://doi.org/10.1038/ncomms4301

    Article  CAS  PubMed  Google Scholar 

  97. Mandinova A, Soldi R, Graziani I, Bagala C, Bellum S, Landriscina M, Tarantini F, Prudovsky I, Maciag T (2003) S100A13 mediates the copper-dependent stress-induced release of IL-1alpha from both human U937 and murine NIH 3 T3 cells. J Cell Sci 116:2687–2696. https://doi.org/10.1242/jcs.00471

    Article  CAS  PubMed  Google Scholar 

  98. Mansoor MA, Bergmark C, Haswell SJ, Savage IF, Evans PH, Berge RK, Svardal AM, Kristensen O (2000) Correlation between plasma total homocysteine and copper in patients with peripheral vascular disease. Clin Chem 46:385–391

    Article  CAS  PubMed  Google Scholar 

  99. Maryon EB, Molloy SA, Kaplan JH (2013) Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am J Phys Cell Phys 304:C768–C779

    Article  CAS  Google Scholar 

  100. Maselbas W, Czlonkowska A, Litwin T, Niewada M (2019) Persistence with treatment for Wilson disease: a retrospective study. BMC Neurol 19:278. https://doi.org/10.1186/s12883-019-1502-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matzuk MM, Dionne L, Guo Q, Kumar TR, Lebovitz RM (1998) Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology 139:4008–4011

    Article  CAS  PubMed  Google Scholar 

  102. McInerney MP, Pan Y, Volitakis I, Bush AI, Short JL, Nicolazzo JA (2019) The effects of clioquinol on P-glycoprotein expression and biometal distribution in the mouse brain microvasculature. J Pharm Sci 108:2247–2255

    Article  CAS  PubMed  Google Scholar 

  103. Medici V, LaSalle JM (2019) Genetics and epigenetic factors of Wilson disease. Ann Transl Med 7:S58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Medici V, Trevisan CP, D’Inca R, Barollo M, Zancan L, Fagiuoli S, Martines D, Irato P, Sturniolo GC (2006) Diagnosis and management of Wilson’s disease: results of a single center experience. J Clin Gastroenterol 40:936–941

    Article  PubMed  Google Scholar 

  105. Mohr I, Weiss KH (2019) Biochemical markers for the diagnosis and monitoring of Wilson disease. Clin Biochem Rev 40:59–77

    Article  PubMed  PubMed Central  Google Scholar 

  106. Molloy SA, Kaplan JH (2009) Copper-dependent recycling of hCTR1, the human high affinity copper transporter. J Biol Chem 284:29704–29713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Murakami H, Kodama H, Nemoto N (2002) Abnormality of vascular elastic fibers in the macular mouse and a patient with Menkes’ disease: ultrastructural and immunohistochemical study. Med Electron Microsc 35:24–30

    Article  PubMed  Google Scholar 

  108. Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H (2018) Copper deficiency anemia: review article. Ann Hematol 97:1527–1534

    Article  CAS  PubMed  Google Scholar 

  109. Nose Y, Kim BE, Thiele DJ (2006) Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab 4:235–244

    Article  CAS  PubMed  Google Scholar 

  110. Nose Y, Wood LK, Kim BE, Prohaska JR, Fry RS, Spears JW, Thiele DJ (2010) Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem 285:32385–32392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ogata R, Chong PF, Maeda K, Imagi T, Nakamura R, Kawamura N, Kira R (2019) Long surviving classical Menkes disease treated with weekly intravenous copper therapy. J Trace Elem Med Biol 54:172–174

    Article  CAS  PubMed  Google Scholar 

  112. Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ozumi K, Sudhahar V, Kim HW, Chen GF, Kohno T, Finney L, Vogt S, McKinney RD, Ushio-Fukai M, Fukai T (2012) Role of copper transport protein antioxidant 1 in angiotensin II-induced hypertension: a key regulator of extracellular superoxide dismutase. Hypertension 60:476–486

    Article  CAS  PubMed  Google Scholar 

  114. Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker W, Selby J, Glerum DM, Coster RV, Lyon G, Scalais E, Lebel R, Kaplan P, Shanske S, De Vivo DC, Bonilla E, Hirano M, DiMauro S, Schon EA (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23:333–337

    Article  CAS  PubMed  Google Scholar 

  115. Petris MJ, Smith K, Lee J, Thiele DJ (2003) Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 278:9639–9646

    Article  CAS  PubMed  Google Scholar 

  116. Pierson H, Yang H, Lutsenko S (2019) Copper transport and disease: what can we learn from organoids? Annu Rev Nutr 39:75–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van ISC, Chan J, Chang CJ, Amoresano A, Pane F, Pucci P, Tarallo A, Parenti G, Brunetti-Pierri N, Settembre C, Ballabio A, Polishchuk RS (2014) Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell 29:686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    Article  CAS  PubMed  Google Scholar 

  119. Reed V, Boyd Y (1997) Mutation analysis provides additional proof that mottled is the mouse homologue of Menkes’ disease. Hum Mol Genet 6:417–423

    Article  CAS  PubMed  Google Scholar 

  120. Rembach A, Doecke JD, Roberts BR, Watt AD, Faux NG, Volitakis I, Pertile KK, Rumble RL, Trounson BO, Fowler CJ, Wilson W, Ellis KA, Martins RN, Rowe CC, Villemagne VL, Ames D, Masters CL, group Ar, Bush AI (2013) Longitudinal analysis of serum copper and ceruloplasmin in Alzheimer’s disease. J Alzheimers Dis 34:171–182

    Article  CAS  PubMed  Google Scholar 

  121. Repiscak P, Erhardt S, Rena G, Paterson MJ (2014) Biomolecular mode of action of metformin in relation to its copper binding properties. Biochemistry 53:787–795

    Article  CAS  PubMed  Google Scholar 

  122. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    Article  PubMed  Google Scholar 

  123. Roberts BR, Lim NK, McAllum EJ, Donnelly PS, Hare DJ, Doble PA, Turner BJ, Price KA, Lim SC, Paterson BM, Hickey JL, Rhoads TW, Williams JR, Kanninen KM, Hung LW, Liddell JR, Grubman A, Monty JF, Llanos RM, Kramer DR, Mercer JF, Bush AI, Masters CL, Duce JA, Li QX, Beckman JS, Barnham KJ, White AR, Crouch PJ (2014) Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 34:8021–8031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roberts EA, Schilsky ML (2008) Diagnosis and treatment of Wilson disease: an update. Hepatology 47:2089–2111

    Article  CAS  PubMed  Google Scholar 

  125. Roos PM, Vesterberg O, Nordberg M (2006) Metals in motor neuron diseases. Exp Biol Med (Maywood) 231:1481–1487

    Article  CAS  Google Scholar 

  126. Savir Y, Martynov A, Springer M (2017) Achieving global perfect homeostasis through transporter regulation. PLoS Comput Biol 13:e1005458. https://doi.org/10.1371/journal.pcbi.1005458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schilsky ML, Blank RR, Czaja MJ, Zern MA, Scheinberg IH, Stockert RJ, Sternlieb I (1989) Hepatocellular copper toxicity and its attenuation by zinc. J Clin Invest 84:1562–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schlief ML, West T, Craig AM, Holtzman DM, Gitlin JD (2006) Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci U S A 103:14919–14924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM (2011) Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sedjahtera A, Gunawan L, Bray L, Hung LW, Parsons J, Okamura N, Villemagne VL, Yanai K, Liu XM, Chan J, Bush AI, Finkelstein DI, Barnham KJ, Cherny RA, Adlard PA (2018) Targeting metals rescues the phenotype in an animal model of tauopathy. Metallomics 10:1339–1347

    Article  CAS  PubMed  Google Scholar 

  131. Shawki A, Anthony SR, Nose Y, Engevik MA, Niespodzany EJ, Barrientos T, Ohrvik H, Worrell RT, Thiele DJ, Mackenzie B (2015) Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. Am J Physiol Gastrointest Liver Physiol 309:G635–G647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Shiono Y, Wakusawa S, Hayashi H, Takikawa T, Yano M, Okada T, Mabuchi H, Kono S, Miyajima H (2001) Iron accumulation in the liver of male patients with Wilson’s disease. Am J Gastroenterol 96:3147–3151

    Article  CAS  PubMed  Google Scholar 

  133. Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, Valko M (2019) Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 93:2491–2513

    Article  CAS  PubMed  Google Scholar 

  134. Singleton WC, McInnes KT, Cater MA, Winnall WR, McKirdy R, Yu Y, Taylor PE, Ke BX, Richardson DR, Mercer JF, La Fontaine S (2010) Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B. J Biol Chem 285:27111–27121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Skopp A, Boyd SD, Ullrich MS, Liu L, Winkler DD (2019) Copper-zinc superoxide dismutase (Sod1) activation terminates interaction between its copper chaperone (Ccs) and the cytosolic metal-binding domain of the copper importer Ctr1. Biometals 32:695–705. https://doi.org/10.1007/s10534-019-00206-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Song MO, Mattie MD, Lee CH, Freedman JH (2014) The role of Nrf1 and Nrf2 in the regulation of copper-responsive transcription. Exp Cell Res 322:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stankovic RK, Chung RS, Penkowa M (2007) Metallothioneins I and II: neuroprotective significance during CNS pathology. Int J Biochem Cell Biol 39:484–489

    Article  CAS  PubMed  Google Scholar 

  138. Starkebaum G, Harlan JM (1986) Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest 77:1370–1376. https://doi.org/10.1172/JCI112442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stremmel W, Merle U, Weiskirchen R (2019) Clinical features of Wilson disease. Ann Transl Med 7:S61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sudhahar V, Okur MN, Bagi Z, O’Bryan JP, Hay N, Makino A, Patel VS, Phillips SA, Stepp D, Ushio-Fukai M, Fukai T (2018) Akt2 (Protein Kinase B Beta) stabilizes ATP7A, a copper transporter for extracellular superoxide dismutase, in vascular smooth muscle: novel mechanism to limit endothelial dysfunction in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 38:529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sudhahar V, Urao N, Oshikawa J, McKinney RD, Llanos RM, Mercer JF, Ushio-Fukai M, Fukai T (2013) Copper transporter ATP7A protects against endothelial dysfunction in type 1 diabetic mice by regulating extracellular superoxide dismutase. Diabetes 62:3839–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Svensson PA, Englund MC, Markstrom E, Ohlsson BG, Jernas M, Billig H, Torgerson JS, Wiklund O, Carlsson LM, Carlsson B (2003) Copper induces the expression of cholesterogenic genes in human macrophages. Atherosclerosis 169:71–76. https://doi.org/10.1016/s0021-9150(03)00145-x

    Article  CAS  PubMed  Google Scholar 

  143. Tanaka YK, Ogra Y (2019) Evaluation of copper metabolism in neonatal rats by speciation analysis using liquid chromatography hyphenated to ICP mass spectrometry. Metallomics 11:1679–1686

    Article  CAS  PubMed  Google Scholar 

  144. Tay SK, Shanske S, Kaplan P, DiMauro S (2004) Association of mutations in SCO2, a cytochrome c oxidase assembly gene, with early fetal lethality. Arch Neurol 61:950–952

    Article  PubMed  Google Scholar 

  145. Theophilos MB, Cox DW, Mercer JF (1996) The toxic milk mouse is a murine model of Wilson disease. Hum Mol Genet 5:1619–1624

    Article  CAS  PubMed  Google Scholar 

  146. Tsai CY, Finley JC, Ali SS, Patel HH, Howell SB (2012) Copper influx transporter 1 is required for FGF, PDGF and EGF-induced MAPK signaling. Biochem Pharmacol 84:1007–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tumer Z (2013) An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat 34:417–429

    Article  PubMed  CAS  Google Scholar 

  148. Tumer Z, Horn N, Tonnesen T, Christodoulou J, Clarke JT, Sarkar B (1996) Early copper-histidine treatment for Menkes disease. Nat Genet 12:11–13

    Article  CAS  PubMed  Google Scholar 

  149. Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, Winge DR, Thiele DJ (2012) A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol 32:1284–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Urso E, Maffia M (2015) Behind the link between copper and angiogenesis: established mechanisms and an overview on the role of vascular copper transport systems. J Vasc Res 52:172–196. https://doi.org/10.1159/000438485

    Article  CAS  PubMed  Google Scholar 

  151. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  152. Vanisova M, Burska D, Krizova J, Danhelovska T, Dosoudilova Z, Zeman J, Stiburek L, Hansikova H (2019) Stable COX17 Downregulation leads to alterations in mitochondrial ultrastructure, decreased copper content and impaired cytochrome c oxidase biogenesis in HEK293 cells. Folia Biol (Praha) 65:181–187

    CAS  Google Scholar 

  153. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  CAS  PubMed  Google Scholar 

  154. Walshe JM (1973) Copper chelation in patients with Wilson’s disease. A comparison of penicillamine and triethylene tetramine dihydrochloride. Q J Med 42:441–452

    CAS  PubMed  Google Scholar 

  155. Walshe JM (1989) Wilson’s disease presenting with features of hepatic dysfunction: a clinical analysis of eighty-seven patients. Q J Med 70:253–263

    CAS  PubMed  Google Scholar 

  156. Watanabe S, Nagano S, Duce J, Kiaei M, Li QX, Tucker SM, Tiwari A, Brown RH Jr, Beal MF, Hayward LJ, Culotta VC, Yoshihara S, Sakoda S, Bush AI (2007) Increased affinity for copper mediated by cysteine 111 in forms of mutant superoxide dismutase 1 linked to amyotrophic lateral sclerosis. Free Radic Biol Med 42:1534–1542

    Article  CAS  PubMed  Google Scholar 

  157. Watts JC, Balachandran A, Westaway D (2006) The expanding universe of prion diseases. PLoS Pathog 2:e26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Wiernicka A, Janczyk W, Dadalski M, Avsar Y, Schmidt H, Socha P (2013) Gastrointestinal side effects in children with Wilson’s disease treated with zinc sulphate. World J Gastroenterol 19:4356–4362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 97:2886–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wyman S, Simpson RJ, McKie AT, Sharp PA (2008) Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett 582:1901–1906

    Article  CAS  PubMed  Google Scholar 

  161. Xiao G, Fan Q, Wang X, Zhou B (2013) Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A 110:14995–15000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yarandi SS, Griffith DP, Sharma R, Mohan A, Zhao VM, Ziegler TR (2014) Optic neuropathy, myelopathy, anemia, and neutropenia caused by acquired copper deficiency after gastric bypass surgery. J Clin Gastroenterol 48:862–865

    Article  CAS  PubMed  Google Scholar 

  163. Yi L, Kaler S (2014) ATP7A trafficking and mechanisms underlying the distal motor neuropathy induced by mutations in ATP7A. Ann N Y Acad Sci 1314:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yi L, Kaler SG (2018) Interaction between the AAA ATPase p97/VCP and a concealed UBX domain in the copper transporter ATP7A is associated with motor neuron degeneration. J Biol Chem 293:7606–7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou X, Xiao X, Li XH, Qin HL, Pu XY, Chen DB, Wu C, Feng L, Liang XL (2020) A study of susceptibility-weighted imaging in patients with Wilson disease during the treatment of metal chelator. J Neurol

  166. Zimnicka AM, Maryon EB, Kaplan JH (2007) Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J Biol Chem 282:26471–26480

    Article  CAS  PubMed  Google Scholar 

  167. Zimnicka AM, Tang H, Guo Q, Kuhr FK, Oh MJ, Wan J, Chen J, Smith KA, Fraidenburg DR, Choudhury MS, Levitan I, Machado RF, Kaplan JH, Yuan JX (2014) Upregulated copper transporters in hypoxia-induced pulmonary hypertension. PLoS One 9:e90544. https://doi.org/10.1371/journal.pone.0090544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (91749121 to Li), the Outstanding Young and Middle-aged Scientific and Technological Innovation Team Program of Colleges and Universities in Hubei Province (T201819 to Jiang), and the Fundamental Research Funds for the Central Universities (SCU2019D013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghua Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Jiang, Y., Shi, H. et al. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch - Eur J Physiol 472, 1415–1429 (2020). https://doi.org/10.1007/s00424-020-02412-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02412-2

Keywords

Navigation