Skip to main content
Log in

Effects of Sodium Chromate Exposure on Gene Expression Profiles of Primary Rat Hepatocytes (In Vitro)

  • Original Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium exposure has adverse impacts on human health and the environment, whereas chromate-induced hepatotoxicity’s detailed mechanism is still unclear. Therefore, the purpose of the current study was to reveal the crucial signaling pathways and genes linked to sodium chromate-induced hepatotoxicity. GSE19662, a gene expression microarray, was obtained from Gene Expression Omnibus (GEO). Six primary rat hepatocyte (PRH) samples from GSE19662 include sodium chromate-treated (n = 3) and the control PRH samples (n = 3). A total of 2,525 differentially expressed genes (DEGs) were obtained, especially 962, and 1,563 genes were up- and downregulated in sodium chromate-treated PRHs compared to the control. Gene ontology (GO) enrichment analysis suggested that those DEGs were involved in multiple biological processes, including the response to toxic substances, the positive regulation of apoptotic process, lipid and cholesterol metabolic process, and others. Signaling pathway enrichment analysis indicated that the DEGs were mainly enriched in MAPK, PI3K-Akt, PPAR, AMPK, cellular senescence, hepatitis B, fatty acid biosynthesis, etc. Moreover, many genes, including CYP2E1, CYP1A2, CYP2C13, CDK1, NDC80, and CCNB1, might contribute to sodium chromate-induced hepatotoxicity. Taken together, this study enhances our knowledge of the potential molecular mechanisms of sodium chromate-induced hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gharbi O, Thomas S, Smith C, Birbilis N (2018) Chromate replacement: what does the future hold? NPJ Mat Degrad 2(1): 12. 12. https://doi.org/10.1038/s41529-018-0034-5.

  2. Wilson BN, Balogh EA, Rayhan DJ, Shitabata PK, Yousefzadeh DJ, Feldman SR (2021) Chromate-induced allergic contact dermatitis treated with dupilumab. J Drugs Dermatol 20(S12):1340–1342. https://doi.org/10.36849/JDD.6246

    Article  PubMed  Google Scholar 

  3. Zhang YL, Su ZK, Hu GP, Hong SY, Long CM, Zhang QJ, Zheng P, Wang TC, Yu SF, Yuan F, Zhu XJ, Jia G (2021) Lung function assessment and its association with blood chromium in a chromate exposed population Sodium chromate I. Total Environ 2021:151741. https://doi.org/10.1016/j.scitotenv.2021.151741

    Article  CAS  Google Scholar 

  4. Zeidler-Erdely PC, Falcone LM, Antonini JM, Fraser K, Kashon ML, Battelli LA, SalmenR TT, Grose L, Friend S, Yang CF, Erdely A (2020) Tumorigenic response in lung tumor susceptible A/J mice after sub-chronic exposure to calcium chromate or iron (III) oxide. Toxicol Lett 334:60–65. https://doi.org/10.1016/j.toxlet.2020.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ha FZ, Li N, Long CM, Zheng P, Hu GP, Jia G, Wang TC (2021) The effect of global DNA methylation on PDCD5 expression in the PBMC of occupational chromate exposed workers. J Occup Environ Med 63(7):600–608. https://doi.org/10.1097/JOM.0000000000002192

    Article  CAS  PubMed  Google Scholar 

  6. Krawic C, Luczak MW, Zhitkovich A (2017) Variation in extracellular detoxification is a link to different carcinogenicity among chromates in rodent and human lungs. Chem Res Toxicol 30(9):1720–1729. https://doi.org/10.1021/acs.chemrestox.7b00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie H, Holmes AL, Wise SS, Huang SP, Peng C, Wise JP (2007) Neoplastic transformation of human bronchial cells by lead chromate particles. Am J Resp Cell Mol Biol 37(5):544–552. https://doi.org/10.1165/rcmb.2007-0058OC

    Article  CAS  Google Scholar 

  8. Feng PY, Ye Z, Han HW, Ling ZM, Zhou TY, Zhao S, Virk AK, Kakade A, Abomohra A, El-Dalatony MM, Salama ES, Liu P, Li XK (2020) Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun Biol 3(1):242. https://doi.org/10.1038/s42003-020-0968-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pourahmad J, Rabiei M, Jokar F, O’brien PJ, (2005) A comparison of hepatocyte cytotoxic mechanisms for chromate and arsenite. Toxicology 206(3):449–460

    Article  CAS  PubMed  Google Scholar 

  10. Carpenter RL, Jiang BH (2013) Roles of EGFR, PI3K, AKT, and mTOR in heavy metal-induced cancer. Curr Cancer Drug Targets 13(3):252–266. https://doi.org/10.2174/1568009611313030004

    Article  CAS  PubMed  Google Scholar 

  11. Deng YP, Johnson DR, Guan X, Ang CY, Ai JM, Perkins EJ (2010) In vitro gene regulatory networks predict in vivo function of liver. BMC Syst Biol 4:153. https://doi.org/10.1186/1752-0509-4-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu YT, Li MH, Guo YY, Liu T, Zhong LS, Huang C, Ye CF, Liu Q Y, Ren Z, Wang YF (2022) The effects of AT-533 and AT-533 gel on liver cytochrome P450 enzymes in rats. Eur J Drug MetabPharmacok.

  13. Honkakoski P, Negishi M (2000) Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 347:321–337. https://doi.org/10.1042/0264-6021:3470321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang SS, Xu Q, Qu KK, Wang J, Zhou ZH (2021) CYP1A2 polymorphism may contribute to agomelatine-induced acute liver injury case report and review of the literature. Medicine 100(45):e27736. https://doi.org/10.1097/MD.0000000000027736

    Article  PubMed  Google Scholar 

  15. Thangavel C, Shapiro BH (2008) Inherent sexually dimorphic expression of hepatic CYP2C12 correlated with repressed activation of growth hormone-regulated signal transduction in male rats Signaling pathways related to SC-induced hepatotoxicity. Drug MetabDispos 36(9):1884–1895. https://doi.org/10.1124/dmd.108.021451

    Article  CAS  Google Scholar 

  16. Fan Q, Brown-Borg H, Brown S, Westin S, Mode A, Corton JC (2004) PPAR alpha activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase. Toxicology 203:41–48

    Article  CAS  PubMed  Google Scholar 

  17. Amer AHA, Wall RJ, Malla S, Sang F, Aboobaker A, Avery SV, Mellor IR, Rose MD, Rowlands JC, Gant TW, Bell DR (2014) Genes involved in the induction of liver growth by peroxisome proliferators. Toxicol Res-UK 3(5):315–323

    Article  CAS  Google Scholar 

  18. Shiota Y, Ikeda M, Hashimoto F, Hayashi H (2003) Effects of peroxisome proliferators gemfibrozil and clofibrate on syntheses of dolichol and cholesterol in rat liver. J Biochem 134(2):197–202

    Article  CAS  PubMed  Google Scholar 

  19. Harjumaki R, Pridgeon CS, Ingelman-Sundberg M (2021) CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipid overload. Int J Mol Sci 22(15):8221

    Article  PubMed  PubMed Central  Google Scholar 

  20. He ZX, Song ZC, Meng LL, Cheng WH, Huang F, Zheng M, Xu WH, Xiao R, Fang HS, Zhu YL (2021) Lipopolysaccharide-induced transcriptional changes in LBP-deficient rat and its possible implications for liver dysregulation during sepsis. J Immunol Res 2021:8356645

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li YL, Chen D, Xu CM, Zhao QYJ, Ma YG, Zhao SL, Chen CY (2020) Glycolipid metabolism and liver transcriptomic analysis of the therapeutic effects of pressed degreased walnut meal extracts on type 2 diabetes mellitus rats. Food Funct 11(6):5538–5552

    Article  CAS  PubMed  Google Scholar 

  22. Song ZC, Meng LL, He ZX, Huang J, Li F, Feng JJ, Jia ZR, Huang Y, Liu W, Liu AD, Fang HS (2021) LBP protects hepatocyte mitochondrial function via the PPAR-CYP4A2 signaling pathway in a rat sepsis model. Shock 56(6):1066–1079. https://doi.org/10.1097/SHK.0000000000001808

    Article  CAS  PubMed  Google Scholar 

  23. Man Q, Deng Y, Li PJ, Ma J, Yang ZJ, Yang XJ, Zhou Y, Yan X (2020) Licorice ameliorates cisplatin-induced hepatotoxicity through antiapoptosis, antioxidative stress, anti-inflammation, and acceleration of metabolism. Front Pharmacol 11:563750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lv XH, Zhou HH, Hu K, Lin L, Yang YQ, Li LJ, Tang L, Huang JY, Shen Y, Jiang R, Wan JY, Zhang L (2021) Activation of PKM2 metabolically controls fulminant liver injury via restoration of pyruvate and reactivation of CDK1. Pharmacol Res 172:105838. https://doi.org/10.1016/j.phrs.2021.105838

    Article  CAS  PubMed  Google Scholar 

  25. Colak D, Al-Harazi O, Mustafa OM, Meng FW, Assiri AM, Dhar DK, Broering DC (2020) RNA-Seq transcriptome profiling in three liver regeneration models in rats: comparative analysis of partial hepatectomy, ALLPS, and PVL. Sci Rep-UK 10(1):5213

    Article  CAS  Google Scholar 

  26. Hao LY, Li SH, Peng Q, Guo YL, Ji JM, Zhang ZQ, Xue Y, Liu YW, Shi XL (2021) Anti-malarial drug dihydroartemisinin downregulates the expression levels of CDK1 and CCNB1 in liver cancer. Oncol Lett 22(3):653. https://doi.org/10.3892/ol.2021.12914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. AbdulHameed MDM, Pannala VR, Wallqvist A (2019) Mining public toxicogenomic data reveals insights and challenges in delineating liver steatosis adverse outcome pathways. Front Genet 10:1007. https://doi.org/10.3389/fgene.2019.01007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su T, Qin XY, Dohmae N, Wei FF, Furutani Y, Kojima S, Yu WK (2021) Inhibition of ganglioside synthesis suppressed liver cancer cell proliferation through targeting kinetochore metaphase signaling. Metabolites 11(3):167. https://doi.org/10.3390/metabo11030167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nair SVG, Ziaullah RHPV (2014) Fatty acid esters of Phloridzin induce apoptosis of human liver cancer cells through altered gene expression. PLoS ONE 9(9):e107149. https://doi.org/10.1371/journal.pone.0107149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo PH, Yan H, Du JX, Chen XQ, Shao JJ, Zhang Y, Xu ZF, Jin Y, Lin NM, Yang B, He QJ (2021) PLK1 (polo like kinase 1)-dependent autophagy facilitates gefitinib-induced hepatotoxicity by degrading COX6A1 (cytochrome c oxidase subunit 6A1). Autophagy 17(10):3221–3237. https://doi.org/10.1080/15548627.2020.1851492

    Article  CAS  PubMed  Google Scholar 

  31. Foca A, Dhillon A, Lahlali T, Lucifora J, Salvetti A, Rivoire M, Lee A, Durantel D (2020) Antiviral activity of PLK1-targeting siRNA delivered by lipid nanoparticles in HBV-infected hepatocytes. Antivir Ther 25(3):151–162. https://doi.org/10.3851/IMP3361

    Article  CAS  PubMed  Google Scholar 

  32. Zhu LJ, Pan Y, Chen XY, Hou PF (2020) BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation. Oncol Lett 19(5):3506–3512

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bai HJ, Jin W, Guo JL, Ding Y, Chang CF, Guo XQ, Song YP, Zhang JB, Xu CH (2019) LncRNA expression reveals the potential regulatory roles in hepatocyte proliferation during rat liver regeneration. Biomed Res Int 2019:8597953. https://doi.org/10.1155/2019/8597953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin H, Huang YS, Fustin JM, Doi MS, Chen HT, Lai HH, Lin SH, Lee YL, King PC, Hou HS, Chen HW, Young PY, Chao HW (2021) Hyperpolyploidization of hepatocyte initiates preneoplastic lesion formation in the liver. Nat Commun 12(1):645. https://doi.org/10.1038/s41467-020-20572-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong X, Shan LL, Cao SS, Li KT, Wu YL, Zhang Q (2022) Notoginsenoside R1, an active compound from panax notoginseng, inhibits hepatic stellate cell activation and liver fibrosis via MAPK signaling pathway. Am J Chinese Med. https://doi.org/10.1142/S0192415X22500197

    Article  Google Scholar 

  36. Wang HQ, Wan Z, Zhang QQ, Su T, Yu D, Wang F, Zhang C, Li W, Xu DL, Zhang H (2022) Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-kappaB and p38 MAPK pathway. Phytomedicine 98:153960. https://doi.org/10.1016/j.phymed.2022.153960

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Guo ZM, Cui HP, Wang T, Xu YH, Zhao J (2021) Urantide prevents CCl4-induced acute liver injury in rats by regulating the MAPK signalling pathway. Mol Med Rep 24(4):688. https://doi.org/10.3892/mmr.2021.12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu XF, Hou Y, Fu Y, Fan J, Yang Y, Zhang N (2021) The role of PTEN/PI3K/AKT signaling pathway in apoptosis of liver cells in cocks with manganese toxicity. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-03039-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang MQ, Zhang J, Gong NQ (2021) Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: a narrative review. Ann Palliat Med. https://doi.org/10.21037/apm-21-3286.

  40. Zhu L, Chen YX, Ding W, Duan YF, Sun DL, Lu YJ (2022) Caspase-3/Treg and PI3K/AKT/mTOR pathway is involved in liver ischemia reperfusion injury (IRI) protection by everolimus. Transpl Immunol 71:101541. https://doi.org/10.1016/j.trim.2022.101541

    Article  CAS  PubMed  Google Scholar 

  41. Zhang WJ, An R, Li QH, Sun LL, Lai XF, Chen RH, Li DL, Sun SL (2020) Theaflavin TF3 relieves hepatocyte lipid deposition through activating an AMPK signaling pathway by targeting plasma kallikrein. J Agr Food Chem 68(9):2673–2683. https://doi.org/10.1021/acs.jafc.0c00148

    Article  CAS  Google Scholar 

  42. Jadeja RN, Chu X, Wood C, Bartoli M, Khurana S (2019) M3 muscarinic receptor activation reduces hepatocyte lipid accumulation via CaMKK beta/AMPK pathway. Biochem Pharmacol 169:113613. https://doi.org/10.1016/j.bcp.2019.08.015

    Article  CAS  PubMed  Google Scholar 

  43. Liu YM, Ma JH, Zeng QL, Lv J, Xie XH, Pan YJ, Yu ZJ (2018) MiR-19a affects hepatocyte autophagy via regulating lncRNA NBR2 and AMPK/PPAR in D-GalN/Lipopolysaccharide-stimulated hepatocytes. J Cell Biochem 119(1):358–365. https://doi.org/10.1002/jcb.26188

    Article  CAS  PubMed  Google Scholar 

  44. Mohamed AAR, El-Houseiny W, El-Murr A, Ebraheim LLM, Ahmed AI, Abd El-Hakim YM (2020) Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: role of curcumin supplemented diet. Ecotoxicol Environ Saf 188:109890. https://doi.org/10.1016/j.ecoenv.2019.109890

    Article  CAS  PubMed  Google Scholar 

  45. Zhang YJ, Xiao F, Liu XM, Liu KH, Zhou XX, Zhong CG (2017) Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction via the PI3K/Akt signaling pathway. Toxicol In Vitro 41:232–244. https://doi.org/10.1016/j.tiv.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  46. Navya K, Kumar GP, Chandrasekhar Y, Anilakumar KR (2018) Evaluation of potassium dichromate (K2Cr2O7)-induced liver oxidative stress and ameliorative effect of Picrorhiza kurroa extract in Wistar Albino rats. Biol Trace Elem Res 184(1):154–164. https://doi.org/10.1007/s12011-017-1172-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Talent Introduction Program of the Anhui Science and Technology University (No. DKYJ202003).

Author information

Authors and Affiliations

Authors

Contributions

B Yang and JL Hua designed the study. XF Li, L Zhao, and ZZ Hu analyzed the results. XS Pang, SJ Wang, and ZH Chen visualized the results. AE Abdel-Moneim revised the scientific English. XF Li prepared the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bing Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12011_2022_3294_MOESM1_ESM.xlsx

Supplementary file1 Additional file 1: All transcripts identified in PRHs of sodium chromate-treated and control groups. (XLSX=2, 859KB) (XLSX 2859 KB)

12011_2022_3294_MOESM2_ESM.xlsx

Supplementary file2 Additional file 2: All genes identified in PRHs of sodium chromate-treated and control groups. (XLSX=1, 284KB) (XLSX 1281 KB)

12011_2022_3294_MOESM3_ESM.xlsx

Supplementary file3 Additional file 3: All DETs in PRHs between sodium chromate-treated and control groups. (XLSX=395KB) (XLSX 394 KB)

12011_2022_3294_MOESM4_ESM.xlsx

Supplementary file4 Additional file 4: All DEGs in PRHs between sodium chromate-treated and control groups. (XLSX=241KB) (XLSX 240 KB)

12011_2022_3294_MOESM5_ESM.xlsx

Supplementary file5 Additional file 5: GO enrichment for genes upregulated in PRHs in sodium chromate-treated group. (XLSX=35KB) (XLSX 35 KB)

12011_2022_3294_MOESM6_ESM.xlsx

Supplementary file6 Additional file 6: GO enrichment for genes downregulated in PRHs in sodium chromate-treated group. (XLSX=99KB) (XLSX 99 KB)

12011_2022_3294_MOESM7_ESM.xlsx

Supplementary file7 Additional file 7: KEGG enrichment for genes upregulated in PRHs in sodium chromate-treated group. (XLSX=21KB) (XLSX 20 KB)

12011_2022_3294_MOESM8_ESM.xlsx

Supplementary file8 Additional file 8: KEGG enrichment for genes downregulated in PRHs in sodium chromate-treated group. (XLSX=33KB) (XLSX 32 KB)

12011_2022_3294_MOESM9_ESM.xlsx

Supplementary file9 Additional file 9: Reactome enrichment for genes upregulated in PRHs in sodium chromate-treated group. (XLSX=24KB) (XLSX 24 KB)

12011_2022_3294_MOESM10_ESM.xlsx

Supplementary file10 Additional file 10: Reactome enrichment for genes downregulated in PRHs in sodium chromate-treated group. (XLSX=35KB) (XLSX 34 KB)

12011_2022_3294_MOESM11_ESM.xlsx

Supplementary file11 Additional file 11: PANTHER enrichment for genes upregulated in PRHs in sodium chromate-treated group. (XLSX=10KB) (XLSX 10 KB)

12011_2022_3294_MOESM12_ESM.xlsx

Supplementary file12 Additional file 12: PANTHER enrichment analysis for genes downregulated in PRHs in sodium chromate-treated group. (XLSX=12KB) (XLSX 12 KB)

12011_2022_3294_MOESM13_ESM.xlsx

Supplementary file13 Additional file 13: Protein Class analysis for genes upregulated in PRHs in sodium chromate-treated group. (XLSX=12KB) (XLSX 11 KB)

12011_2022_3294_MOESM14_ESM.xlsx

Supplementary file14 Additional file 14: Protein Class analysis for genes downregulated in PRHs in sodium chromate-treated group. (XLSX=10KB) (XLSX 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Abdel-Moneim, AM.E., Hua, J. et al. Effects of Sodium Chromate Exposure on Gene Expression Profiles of Primary Rat Hepatocytes (In Vitro). Biol Trace Elem Res 201, 1913–1934 (2023). https://doi.org/10.1007/s12011-022-03294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03294-4

Keywords

Navigation