Skip to main content
Log in

Analysis of gene expression changes in relation to hepatotoxicity induced by perfluorinated chemicals in a human hepatoma cell line

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) represent a rising class of persistent organic pollutants termed perfluorinated chemicals (PFCs). In this study, hepatotoxic effects of PFCs were examined by microarray and gene ontology (GO) analysis. Human hepatocellular carcinoma (HepG2) cells were exposed to PFOS and PFOA for 48 h, and the RNA was collected. Global gene expression analysis using microarrays revealed 279 and 1,973 genes that changed greater than 1.5-fold after PFOS and PFOA exposure, respectively (P<0.05 for both), with 154 genes common to both PFCs. These genes were enriched in gene ontology (GO) terms and KEGG pathways associated with hepatotoxicity. Many genes were involved in complement and coagulation cascades, PPAR signaling pathway, and regulation of cell proliferation, which coincide with clinical evidence and indicate the critical hepatotoxicity of PFCs. These results show that transcriptome alterations induced by PFOS and PFOA could be possible signatures of the hepatotoxic effects of PFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjorklund, J. A., Thuresson, K. & De Wit, C. A. Perfluoroalkyl compounds (PFCs) in indoor dust: Concen-trations, human exposure estimates, and sources. Environ. Sci. Tech. 43, 2276–2281 (2009).

    Article  Google Scholar 

  2. Fromme, H. et al. Perfluorinated compounds-Exposure assessment for the general population in western countries. Int. J. Hyg. Environ. Health 212, 239–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. EPA. Revised draft hazard assessment of perfluorooctanoic acid and its salts. US Environmental Protection Agency. Office of Pollution Prevention and Toxics. Risk Assessment Division (AR226-1136), Washington, DC, p107 (2002).

  4. Giesy, J. P. & Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 35, 1339–1342 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Olsen, G. W. et al. Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environ. Health Perspect. 113, 539–545 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lindstrom, A. B., Strynar, M. J. & Libelo, E. L. Polyfluorinated compounds: past, present, and future. Environ. Sci. Technol. 45, 7954–7961 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, Y. G., Wong, C. K. & Wong, M. H. Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on Asian countries. Chemosphere 89, 355–368 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. D’Hollander, W., De Voogt, P., De Coen, W. & Bervoets, L. Perfluorinated substances in human food and other sources of human exposure. Rev. Environ. Contam. Toxicol. 208, 179–215 (2010).

    PubMed  Google Scholar 

  9. Goosey, E. & Harrad, S. Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environ. Int. 37, 86–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S. K. et al. Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposures. Environ. Pollut. 159, 169–174 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Andersen, M. E. et al. Perfluoroalkyl acids and related chemistries-toxicokinetics and modes of action. Toxicol. Sci. 102, 3–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kennedy, G. L. et al. The toxicology of perfluorooctanoate. Crit. Rev. Toxicol. 34, 351–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Lau, C. et al. Seed Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol. Sci. 99, 366–394 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Abdellatif, A. et al. Peroxisomal enzymes and 8-hydroxydeoxyguanosine in rat liver treated with perfluorooctanoic acid. Dis. Markers 19, 19–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. OECD (Organisation for Economic Co-operation and Development), ENV/JM/RD (2002)17/FINAL. Hazard assessment of perfluooroctane sulfonate (PFOS) and its salts (2002).

  16. Kudo, N. & Kawashima, Y. Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J. Toxicol. Sci. 28, 49–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Son, H. Y. et al. Perfluorooctanoic acid-induced hepatic toxicity following 21-day oral exposure in mice. Arch. Toxicol. 82, 239–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Cui, L. et al. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch. Environ. Con. Tox. 56 338–349 (2009).

    Article  CAS  Google Scholar 

  19. Eldasher, L. M. et al. Hepatic and renal Bcrp transport er expression in mice treated with perfluorooctanoic acid. Toxicology 306, 108–113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abdellatif, A. G., Preat, V., Taper, H. S. & Roberfroid M. The modulation of rat liver carcinogenesis by per fluorooctanoic acid. a peroxisome proliferator. Toxicol Appl. Pharmacol. 111, 530–537 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Beach, S. A., Newsted, J. L., Coady, K. & Giesy, J.P Ecotoxicological evaluation of perfluorooctane sulfon ate (PFOS). Rev. Environ. Contam. Toxicol. 186, 133–174 (2006).

    CAS  PubMed  Google Scholar 

  22. Giesy, J. P. et al. Aquatic toxicology of perfluorinated chemicals. Crit. Rev. Env. Toxicol. 202, 1–52 (2009).

    Google Scholar 

  23. LeCluyse, E. L., Bullock, P. L. & Parkinson, A. Strate gies for restoration and maintenance of normal hepatic structure and function in long-term cultures of ra hepatocytes. Adv. Drug Deliver. Rev. 22, 133–186 (1996).

    Article  CAS  Google Scholar 

  24. DelRaso, N. J. In vitro methodologies for enhanced toxicity testing. Toxicol. Lett. 68, 91–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. “Existing Non-animal Alternatives”. Source: AltTox org.2011, 34–35 (2011).

  26. Ding, G. H. et al. Acute toxicity of poly-and perfluori nated compounds to two cladocerans, Daphnia magna and Chydorus sphaericus. Environ. Toxicol. Chem. 31 605–610 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ji, K. et al. Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinver tebrates (Daphnia magna and Moina macrocopa) and fish (Oryzias latipes). Environ. Toxicol. Chem. 27 2159–2168 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Li, M. H. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic inverte brates. Environ. Toxicol. 24, 95–101 (2009).

    Article  PubMed  Google Scholar 

  29. MacDonald, M. M. Toxicity of perfluorooctane sulfon ic acid and perfluorooctanoic acid to Chironomus ten tans. Environ. Toxicol. Chem. 23, 2116–2123 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Song, M. K., Choi, H. S., Park, Y. K. & Ryu, J. C. Dis covery of characteristic molecular signatures for the simultaneous prediction and detection of environmen tal pollutants. Environ. Sci. Pollut. Res. 21, 3104–3115 (2014).

    Article  CAS  Google Scholar 

  31. Song, M. K., Choi, H. S., Lee, H. S. & Ryu, J. C. Tran scriptome profile analysis of saturated aliphatic alde hydes reveals carbon number-specific molecules invo lved in pulmonary toxicity. Chem. Res. Toxicol. 27 1362–1370 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Mathijs, K. et al. Gene expression profiling in primary mouse hepatocytes discriminates true from false-posi tive genotoxic compounds. Mutagenesis 25, 561–568 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Van Kesteren, P. C. et al. Deregulation of cancer-relat ed pathways in primary hepatocytes derived from DNA repair-deficient Xpa-/-p53+/-mice upon exposure to benzo[a]pyrene. Toxicol. Sci. 123, 123–132 (2011).

    Article  PubMed  Google Scholar 

  34. Galbiati, V. et al. Establishment of an in vitro photoallergy test using NCTC2544 cells and IL-18 production. Toxicol. I. Vitro 27, 103–110 (2013).

    Article  CAS  Google Scholar 

  35. Van der Veen, J. W., Pronk, T. E., van Loveren, H. & Ezendam, J. Applicability of a keratinocyte gene signature to predict skin sensitizing potential. Toxicol. I. Vitro 27, 314–322 (2013).

    Article  Google Scholar 

  36. Vandebriel. R. J. et al. Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol. Sci. 117, 81–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Verstraelen, S. et al. Gene profiles of a human bronchial epithelial cell line after in vitro exposure to respiratory (non-)sensitizing chemicals: identification of discriminating genetic markers and pathway analysis. Toxicology 255, 151–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. King, K. L. & Cidlowski, J. A. Cell cycle regulation and apoptosis. Annu. Rev. Physiol. 60, 601–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Kerr, J. F. & Searle, J. A mode of cell loss in malignant neoplasms. J. Pathol. 106, Pxi (1972).

  40. Michalik, L., Desvergne, B. & Wahli, W. Peroxisomeproliferatoractivated receptors and cancers: complex stories. Nat. Rev. Cancer 4, 61–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Tachibana, K., Yamasaki, D., Ishimoto, K. & Doi, T. The role of PPARs in cancer. PPAR. Res. 2008, Article ID 102737 (2008).

  42. Reddy, J. K., Azarnoff, D. L. & Hignite, C. E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283, 397–398 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. Peters, J. M., Cattley, R. C. & Gonzalez, F. J. Role of PPARa in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 18, 2029–2033 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Hays, T. et al. Role of peroxisome proliferator-activated receptor-a (PPARa) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis 26, 219–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Gervois, P. et al. Global suppression of IL-6-induced acute phase response gene expression after in vivo chronic treatment with the peroxisome proliferator-activated receptor a activator fenofibrate. J. Biol. Chem. 279, 16154–16160 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hellemans, K. et al. Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology 124, 184–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Shan, W. et al. Peroxisome proliferator-activated receptorbeta/delta protects against chemically induced liver toxicity in mice. Hepatology 47, 225–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Hood, E. Alternative Mechanism for PFOA?: Trout Studies Shed Light on Liver Effects. Environ. Healt. Perspect. 116, A351 (2008).

    Article  Google Scholar 

  49. DeWitt, J. C. et al. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit. Rev. Toxicol. 39, 76–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Rosen, M. B. et al. Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid. Reprod. Toxicol. 27, 278–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Corton, J. C. in Cancer risk assessment: chemical carcinogenesis, hazard evaluation, and risk quantification (eds Hsu, C.-H., Stedeford, T.) 438-481 (John Wiley & Sons, Inc, New Jersey, Hoboken, 2010).

    Google Scholar 

  52. Klaunig, J. E. et al. PPARa agonist-induced rodent tumors: modes of action and human relevance. Crit. Rev. Toxicol. 33, 655–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Foreman, J. E. et al. Differential hepatic effects of perfluorobutyrate mediated by mouse and human PPARalpha. Toxicol. Sci. 110, 204–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. EPA, https://peerreview.versar.com/epa/pfoa/pdf/Health-Effects-Document-for-Perfluorooctane-Sulfonate-(PFOS).pdf (2014).

  55. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. Park, Y. S. et al. Identification of three novel mutations in Korean phenylketonuria patients: R53H, N207D, and Y325X. Hum. Mut. Suppl. 1, S121–122 (1998).

    Article  Google Scholar 

  57. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate-A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Met. 57, 289–300 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, MK., Cho, Y., Jeong, SC. et al. Analysis of gene expression changes in relation to hepatotoxicity induced by perfluorinated chemicals in a human hepatoma cell line. Toxicol. Environ. Health Sci. 8, 114–127 (2016). https://doi.org/10.1007/s13530-016-0269-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0269-x

Keywords

Navigation