Skip to main content

Advertisement

Log in

Investigation Covering the Effect of Boron plus Taurine Application on Protein Carbonyl and Advanced Oxidation Protein Products Levels in Experimental Alzheimer Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common form of dementia that occurs in the brain. This is a chronic neurodegenerative disease which is valid in 60–70% of all dementia patients. Boron, regarded as a potential antioxidant, has the effect of reducing oxidative stress. Taurine, as one of the thiol-containing amino acids, exists at different concentrations in both the neurons and glial cells of the central nervous system. It plays an important role in the protective and adjuvant therapies as an antioxidant due to its characteristics of maintaining the oxidant-antioxidant balance of the body as well as cell integrity and increasing body resistance. Based on this information, our objective was to reveal the effect of boron alone, taurine alone plus co-administration of taurine and boron application on brain tissue protein carbonyls (PC) and serum advanced oxidation protein products (AOPP) levels in the experimental Alzheimer’s model. For this purpose, 5 groups were formed in our study which consisted of 30 Wistar albino male rats. The rats were given a single dose of STZ stereotaxically. At the end of this period, the rats were decapitated, plus their brain tissues and blood were removed. Our findings suggested that taurine alone and co-administration of boron and taurine had a decreasing effect on AOPP and PC levels of the experimental Alzheimer model of the rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Chart 3
Chart 4
Chart 5

Similar content being viewed by others

References

  1. Gumuslu KE (2016) Alzheimer’s disease: risk genes and genetic markers for diagnosis and pathogenesis of Alzheimer’s disease. Turkiye Klinikleri J Pharma- Spec Top 4(1):36–41

    Google Scholar 

  2. Internet: World Health Organization (2019) Dementia, WHO web: https://www.who.int/news-noom/fact-sheets/detail/dementia 17 May 2019

  3. Elcioglu HK, Yılmaz G, Ilhan B, Karan MA (2018) Experimental animal models for Alzheimer disease. Nobel Medicus 14(1):5–13

    Google Scholar 

  4. Kang S, Lee Y, Lee JE (2017) Metabolism-centric overview of the pathogenesis of Alzheimer disease. Yansei Med J 58(3):479–488

    Article  CAS  Google Scholar 

  5. Bondi MW, Edmonds EC, Salman DP (2017) Alzheimer’s disease: past, present, and future. J Neuropsychol Soc 23(9–10):818–831

    Article  Google Scholar 

  6. TuncerElmacı N (2012) The pathophysiology of Alzheimer’s disease. Turkiye Klinikleri J Neurol- Spec Top 5(3):7–10

    Google Scholar 

  7. Hunt CD, Idso JP (1999) Dietary boron as a physiological regulator of the normal ınflammatory response: a review and current research progress. J Trace Elem Exp Med 12:221–233

    Article  CAS  Google Scholar 

  8. Nielsen FH (2000) The emergence of boron as nutritionally ımportant throughout the life cycle. Nutrition 16(7–8):512–514

    Article  CAS  PubMed  Google Scholar 

  9. Lu C, Hu J, Wang Z, Xie S, Pan T, Huang L, Li X (2018) Discovery of boron-containing compounds as Aβ aggregation inhibitors and antioxidants for the treatment of Alzheimer’s disease. MedChemComm 7(1):1–11

    Google Scholar 

  10. Tan B, Jiang DJ, Huang H, Jia SJ, Jiang JL, Hu CP, Li YJ (2007) Taurine protects against low-density lipoprotein-induced endothelial dysfunction by the DDAH/ADMA pathway. Vascu Pharma 46(2007):338–345

    Article  CAS  Google Scholar 

  11. Reeta KH, Singh D, Gupta YK (2017) Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation. Neurochem Int 108(2017):146–156

    Article  CAS  PubMed  Google Scholar 

  12. Ozan G, Turkozkan N, Bircan FS, Balabanlı B (2018) Effect of taurine on brain energy status and malondialdehyde levels in endotoxemia model. Bozok Med J 8(1):11–17

    Google Scholar 

  13. Schuller-Levis GB, Park E (2004) Taurine and its chloramine: modulators of immunity. Neurochem Res 29(1):117–126

    Article  CAS  PubMed  Google Scholar 

  14. El Idrissi A, Trenkner E (2003) Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol Taurine 5(526):527–536

    Article  Google Scholar 

  15. SirvancıYalabık M, Sehirli O, Utkan T, Arıcıoglu F (2013) Effects of agmatine in streptozotocine induced experimental Alzheimer model. J Marmara Univ Inst Health Sci 3(3):145–153

    Google Scholar 

  16. Ramezani M, Darbandi N, Khodagholi F, Hashemi A (2016) Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural Regen Res 11(12):1976–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paxinos G, Watson C (2004) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, San Diedo

    Google Scholar 

  18. Dhull DK, Kumar A (2017) Tramadol ameliorates behavioral, biochemical, mitochondrial and histological alteration in ICV-STZ-induced sporadic dementia of Alzheimer type in rats. İnflammopharmacology,1–14

  19. Mishra SK, Singh S, Shukla S, Shukla R (2018) Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive function via regulating neuroinflammation and insulin signaling in adult rats. Neurochem Int 113:56–68

    Article  CAS  PubMed  Google Scholar 

  20. Yılmaz U (2015) Merkezi Olarak Fgf21 Uygulamasının Hipotalamus-Hipofiz-Tiroid Aksı ve Ucp1 Gen İfadesi Uzerine Etkilerinin Arastırılması. İnonu Universitesi Saglık Bilimleri Enstitusu, Malatya, Yuksek Lisans Tezi, pp 22–23

    Google Scholar 

  21. Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68(9):1021–1029

    Article  CAS  PubMed  Google Scholar 

  22. Balabanlı B, Balaban T (2015) Investigation into the effects of boron on liver tissue protein carbonyl, MDA, and glutathione levels in endotoxemia. Biol Trace Elem Res 167(2):259–263

    Article  PubMed  Google Scholar 

  23. Camasana J, Marimon JM, Rogrigo T, Escubedo E, Pubill D (2008) Memantine prevents the cognitive impairment induced by 3,4-methylenedioxymethamphetamine in rats. Eur Pharmacol 589(1–3):132–139

    Google Scholar 

  24. Prakash A, Medhi B, Chopra K (2013) Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-β induced experimental model of Alzheimer’s disease. Pharmacol Biochem Behav 110:46–57

    Article  CAS  PubMed  Google Scholar 

  25. Reznick AZ, Packer L (1994) Oxidative damage to protein: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  26. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Method Enzymol 186:464–478

    Article  CAS  Google Scholar 

  27. Atukeren P, Cengiz M, Yavuzer H, Gelisgen R, Altunoglu E, Oner S, Erdenen F, Yuceakın D, Derici H, Cakatay U, Uzun H (2017) The efficacy of donezepil administration on acetylcholinesterase activity and altered redox homeostasis in Alzheimer’s disease. Biomed Pharmacother 90:786–795

    Article  CAS  PubMed  Google Scholar 

  28. Sayre LM, Moreira PI, Smith MA, Perry G (2005) Metal ions and oxidative protein modification in neruological disease. Annali dell’Istituto Superiore di Sanita 41(2):143–164

    CAS  PubMed  Google Scholar 

  29. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Migration 3(1):88–93

    Google Scholar 

  30. Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adh Migr 3(1):88–93

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35(22):7497–7504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davies MJ (2005) The oxidative environment and protein damage. Biochimia et Biophysica Acta (BBA)-Proteins and Proteomics 1703(2): 93–109

  33. Korolainen MA, Nyman TA, Nyysonen P, Hartikainen ES, Pırttıla T (2007) Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin Chem 53(4):657–665

    Article  CAS  PubMed  Google Scholar 

  34. Bazazzadegan N, Shasaltaneh MD, Saliminejad K, Kamali K, Banan M, Nazari R, Riazi GH, Khorshid HRK (2017) Effects of ectoine on behavior and candidate genes expression in ICV-STZ rat model of sporadic Alzheimer’s disease. Adv Pharm Bull 7(4):629–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamini P, Say RS, Chopra K (2017) Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease. Inflammopharmacology 26(1):39–55

    Article  PubMed  Google Scholar 

  36. Altunoglu E, Guntas G, Erdenen F, Akkaya E, Topac I, Irmak H, Derici H, Yavuzer H, Gelisgen R, Uzun H (2014) Ischemia-modified albumin and advanced oxidation protein in Alzheimer’s disease. Geriatr Gerontol Int 15(7):872–880

    Article  PubMed  Google Scholar 

  37. Korkmaz GG, Altınoglu E, Civelek S, Sezer V, Erdenen F, Tabak O, Uzun H (2013) The association of oxidative stress markers with conventional risk factors in the metabolic syndrome. Metab Clin Exp 62(6):828–835

    Article  CAS  PubMed  Google Scholar 

  38. Konca M (2018) Ratlarda, Oral ve Lokal Olarak Uygulanan Borun Yara İyilesmesi ve Oksidatif Stres Uzerine Etkisinin Karsılastırılması, Yuksek Lisans Tezi, Afyon Kocatepe Universitesi Saglık Bilimleri Enstitusu, Afyonkarahisar, 25–26

  39. Snow ET, Sykara P, Durham TR, Klein CB (2005) Arsenic, mode of action at biologically plausible low doses: what are the implications for low dose cancer risk? Toxiol Appl Pharmacol 207(2):557–564

    Article  Google Scholar 

  40. Ince S, Kucukkurt I, Cigerci IH, Fidan AF, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity and DNA damage in rats. J Trace Elem Med Biol 24(3):161–164

    Article  CAS  PubMed  Google Scholar 

  41. Pizzorno L (2015) Nothing boring about boron İnterative. Medicine 14(4):35–48

    Google Scholar 

  42. Gezen-Karadag M, Turkozu D (2014) Current overvıew of ınteractions with dietary boron ıntakes and health. Gumushane Univ J Health Sci 3(2):771–779

    Google Scholar 

  43. SunucuKarafakıoglu Y (2010) Antioxidant and taurine as an antioxidant. Kocatepe Vet J 3(1):55–61

    Google Scholar 

  44. Santa-Maria I, Hernandez F, Moreno FJ, Avila J (2007) Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation. Neurosci Lett 429(2–3):91–94

    Article  CAS  PubMed  Google Scholar 

  45. Cakatay U, Kayalı R (2004) The clinical importance of protein oxidation. Cerrahpasa J Med 35(3):140–149

    Google Scholar 

  46. Buyukguzel E (2013) Biochemical and molecular mechanism of protein. Karaelmas Sci Eng J 3(1):40–51

    Article  Google Scholar 

Download references

Funding

This study was supported by Gazi University, Department of Scientific Research Projects Unit (Project No: 05/2018–20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cigdem Yildirim.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, C., Yar Saglam, A.S., Guney, S. et al. Investigation Covering the Effect of Boron plus Taurine Application on Protein Carbonyl and Advanced Oxidation Protein Products Levels in Experimental Alzheimer Model. Biol Trace Elem Res 201, 1905–1912 (2023). https://doi.org/10.1007/s12011-022-03293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03293-5

Keywords

Navigation