Skip to main content
Log in

Cardiovascular Diseases and Zinc

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is structurally and functionally essential for more than 300 enzymes and 2000 transcription factors in human body. Intracellular labile zinc is the metabolically effective zinc and tiny changes in its concentrations significantly affect the intracellular signaling and enzymatic responses. Zinc is crucial for the embrionic and fetal development of heart. Therefore, it is shown to be related with a variety of congenital heart defects. It is involved in epithelial-to-mesenchymal transformation including endocardial cushion development, which is necessary for atrioventricular septation as well as the morphogenesis of heart valves. In atherosclerosis, monocyte endothelial adhesion, and diapedesis, activation and transformation into macrophages and forming foam cells by the ingestion of oxidized LDL are monocyte related steps which need zinc. Intracellular zinc increases intracellular calcium through a variety of pathways and furthermore, zinc itself can work as a second messenger as calcium. These demonstrate the significance of intracellular zinc in heart failure and arterial hypertension. However, extracellular zinc has an opposite effect by blocking calcium channels, explaining decreased serum zinc levels, contrary to the increased cardiomyocyte and erythrocyte zinc levels in hypertensive subjects. These and other data in the literature demonstrate that zinc has important roles in healthy and diseased cardiovascular system but zinc-cardiovascular system relationship is so complex that, it has not been explained in all means. In this article, we try to review some of the available knowledge about this complex relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Research Data Policy and Data Availability

The data that support the findings of this study are available from [THIRD PARTY NAME] but restrictions apply to the availability of these data, which were used under licence for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of [THIRD PARTY NAME].

References

  1. Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition 26(11–12):1050–1057

    Article  CAS  PubMed  Google Scholar 

  2. Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  CAS  PubMed  Google Scholar 

  3. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118

    Article  CAS  PubMed  Google Scholar 

  4. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526):2488–2492

    Article  CAS  PubMed  Google Scholar 

  5. Kok FJ, Van Duijn CM, Hofman A, Van der Voet GB, De Wolff FA, Paays CH, Valkenburg HA (1988) Serum copper and zinc and the risk of death from cancer and cardiovascular disease. Am J Epidemiol 128(2):352–359

    Article  CAS  PubMed  Google Scholar 

  6. Sun Y, Tan M, Duan H, Swaroop M (2001) SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions. Antiox Redox Signal 3(4):635–650

    Article  CAS  Google Scholar 

  7. Jameson S (1976) Zinc and copper in pregnancy, correlations to fetal and maternal complications. Acta Med Scand Suppl 593:5–20

    CAS  PubMed  Google Scholar 

  8. Liu C, He X, Hong X, Kang F, Chen S, Wang Q, Chen X, Hu D, Sun Q (2014) Suppression of placental metallothionein 1 and zinc transporter 1 mRNA expressions contributes to fetal heart malformations caused by maternal zinc deficiency. Cardiovasc Toxicol 14(4):329–338

    Article  CAS  PubMed  Google Scholar 

  9. Zhang B-Y, Zhang T, Liang-Ming L et al (2008) Correlation between birth defects and dietary nutrition status in a high incidence area of China. Biomed Environ Sci 21(1):37–44

    Article  PubMed  Google Scholar 

  10. He X, Hong X, Zeng F, Kang F, Li L, Sun Q (2009) Zinc antagonizes homocysteine-induced fetal heart defects in rats. Cardiovasc Toxicol 9(3):151–159

    Article  CAS  PubMed  Google Scholar 

  11. Zalewski P, Beltrame J, Wawer A, Abdo A, Murgia C (2019) Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Crit Rev Food Sci Nutr 59(21):3511–3525

    Article  CAS  PubMed  Google Scholar 

  12. Etzion Y, Ganiel A, Beharier O, Shalev A, Novack V, Volvich L, Abrahamov D, Matsa M, Sahar G, Moran A, Katz A (2008) Correlation between atrial ZnT-1 expression and atrial fibrillation in humans: a pilot study. J Cardiovasc Electrophysiol 19(2):157–164

    Article  PubMed  Google Scholar 

  13. Pikkarainen S, Tokola H, Kerkelä R, Ruskoaho H (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63(2):196–207

    Article  CAS  PubMed  Google Scholar 

  14. Shi L-M, Tao J-W, Qiu X-B et al (2014) GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med 33(5):1219–1226

    Article  CAS  PubMed  Google Scholar 

  15. Komuro I (2001) Molecular mechanism of cardiac hypertrophy and development. Jpn Circ J 65(5):353–358

    Article  CAS  PubMed  Google Scholar 

  16. Li R-G, Xu Y-J, Wang J et al (2018) GATA4 loss-of-function mutation and the congenitally bicuspid aortic valve. Am J Cardiol 121(4):469–474

    Article  CAS  PubMed  Google Scholar 

  17. Yang B, Zhou W, Jiao J et al (2017) Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve. Nat Commun 8:1–10

    Google Scholar 

  18. Losenno KL, Goodman RL, Chu MW (2012) Bicuspid aortic valve disease and ascending aortic aneurysms: gaps in knowledge. Cardiol Res Pract 2012:145202

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin W, Li D (2018) Zinc and zinc transporters: novel regulators of ventricular myocardial development. Pediatr Cardiol 39(5):1042–1051

    Article  PubMed  Google Scholar 

  20. Lin W, Li D, Cheng L, Li L, Liu F, Hand NJ, Epstein JA, Rader DJ (2018) Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Invest 128(2):826–833

    Article  PubMed  PubMed Central  Google Scholar 

  21. Turan B, Tuncay E (2017) Impact of labile zinc on heart function: from physiology to pathophysiology. Int J Mol Sci 18(11):2395

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alvarez-Collazo J, Diaz-Garcia C, Lopez-Medina A, Vassort G, Alvarez J (2012) Zinc modulation of basal and β-adrenergically stimulated L-type Ca 2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflügers Arch- Eur J Physiol 464(5):459–470

    Article  CAS  Google Scholar 

  23. Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18(16):6163–6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenblum H, Wessler JD, Gupta A, Maurer MS, Bikdeli B (2020) Zinc deficiency and heart failure: a systematic review of the current literature. J Card Fail 26(2):180–189

    Article  PubMed  Google Scholar 

  25. Yoshihisa A, Abe S, Kiko T et al (2018) Association of serum zinc level with prognosis in patients with heart failure. J Card Fail 24(6):375–383

    Article  CAS  PubMed  Google Scholar 

  26. Frediani JK, Reilly CM, Higgins M, Clark PC, Gary RA, Dunbar SB (2013) Quality and adequacy of dietary intake in a southern urban heart failure population. J Cardiovasc Nurs 28(2):119

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vest AR, Chan M, Deswal A et al (2019) Nutrition, obesity, and cachexia in patients with heart failure: a consensus statement from the Heart Failure Society of America Scientific Statements Committee. J Card Fail 25(5):380–400

    Article  PubMed  Google Scholar 

  28. Spinale FG (1999) Novel approaches to retard ventricular remodeling in heart failure. Eur J Heart Fail 1(1):17–23

    Article  CAS  PubMed  Google Scholar 

  29. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4(2):176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu J-R, Moser DK, DeWalt DA, Rayens MK, Dracup K (2016) Health literacy mediates the relationship between age and health outcomes in patients with heart failure. Circ Heart Fail 9(1):e002250

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shokrzadeh M, Ghaemian A, Salehifar E, Aliakbari S, Saravi SSS, Ebrahimi P (2009) Serum zinc and copper levels in ischemic cardiomyopathy. Biol Trace Elem Res 127(2):116–123

    Article  CAS  PubMed  Google Scholar 

  32. Yu X, Huang L, Zhao J, Wang Z, Yao V, Wu X, Huang J, Bian B (2018) The relationship between serum zinc level and heart failure: a meta-analysis. Biomed Res Int 2018:2739014

    PubMed  PubMed Central  Google Scholar 

  33. Chou H, Yang H, Tsou S, Ho R, Pai P, Hsu H (1998) Status of trace elements in patients with idiopathic dilated cardiomyopathy in central Taiwan. Zhonghua Yi Xue Za Zhi (Taipei) 61(4):193–198

    CAS  PubMed  Google Scholar 

  34. de Lorgeril M, Salen P, Accominotti M, Cadau M, Steghens JP, Boucher F, de Leiris J (2001) Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of selenium in heart failure. Eur J Heart Fail 3(6):661–669

    Article  PubMed  Google Scholar 

  35. Frustaci A, Sabbioni E, Fortaner S, Farina M, del Torchio R, Tafani M, Morgante E, Ciriolo MR, Russo MA, Chimenti C (2012) Selenium- and zinc-deficient cardiomyopathy in human intestinal malabsorption: preliminary results of selenium/zinc infusion. Eur J Heart Fail 14(2):202–210

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, Gordillo-Martinez F, Jiang L et al (2021) Zinc ameliorates human aortic valve calcification through GPR39 mediated ERK1/2 signalling pathway. Cardiovasc Res 117(3):820–835

    Article  CAS  PubMed  Google Scholar 

  37. Menetti F, Tohno S, Tohno Y, Azuma C, Moriwake Y, Satoh H, Minami T, Mahakkanukrauh P, Oishi T, Hayashi M (2005) Age-dependent decreases of calcium, phosphorus, sulfur, and zinc in the cardiac valves of monkeys. Biol Trace Element Res 106(3):231–245

    Article  CAS  Google Scholar 

  38. Edep ME, Shirani J, Wolf P (2000) Brown DL (2000) Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc Pathol 9(5):281–286

    Article  CAS  PubMed  Google Scholar 

  39. Matsui S, Ameku T, Takada D, Ono S (2020) The association between hypozincemia and aortic stenosis prevalence in hemodialysis patients: a single-center cross-sectional study. Ren Replace Ther 6:1–6

    Article  Google Scholar 

  40. Aydemir B, Akdemir R, Vatan MB, Cinemre FB, Cinemre H, Kiziler AR, Bahtiyar N, Buyukokuroglu ME, Gurol G, Ogut S (2015) The circulating levels of selenium, zinc, midkine, some inflammatory cytokines, and angiogenic factors in mitral chordae tendineae rupture. Biol Trace Elem Res 167(2):179–186

    Article  CAS  PubMed  Google Scholar 

  41. Passos LS, Nunes MCP, Aikawa E (2021) Rheumatic heart valve disease pathophysiology and underlying mechanisms. Front Cardiovasc Med 7:612716

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee S-D, Chen L-M, Kuo W-W et al (2006) Serum insulin-like growth factor-axis and matrix metalloproteinases in patients with rheumatic arthritis or rheumatic heart disease. Clin Chim Acta 367(1–2):62–68

    Article  CAS  PubMed  Google Scholar 

  43. Govindaraju V, Prabhudev N, Gurappa M, Jawali V, Chandrasekhara P, Manjunath C (1993) Zinc in rheumatic heart valves. J Assoc Physicians India 41(10):653–654

    CAS  PubMed  Google Scholar 

  44. Kosar F, Sahin I, Acikgöz N, Aksoy Y, Kucukbay Z, Cehreli S (2005) Significance of serum trace element status in patients with rheumatic heart disease. Biol Trace Elem Res 107(1):1–9

    Article  CAS  PubMed  Google Scholar 

  45. Öncel MH, Tuncer C (2019) Assessment of serum trace element levels in rheumatic heart disease: a case-control study. Arch Clin Exp Med 4(1):1–5

    Google Scholar 

  46. Xian S, Chen A, Wu X et al (2021) Activation of activin/Smad2 and 3 signaling pathway and the potential involvement of endothelial-mesenchymal transition in the valvular damage due to rheumatic heart disease. Mol Med Rep 23(1):1–1

    Article  Google Scholar 

  47. Beattie JH (2004) Kwun I-S (2004) Is zinc deficiency a risk factor for atherosclerosis? Br J Nutr 91(2):177–181

    Article  CAS  PubMed  Google Scholar 

  48. Wilkins GM, Leake DS (1994) The oxidation of low density lipoprotein by cells or iron is inhibited by zinc. FEBS Lett 341(2–3):259–262

    Article  CAS  PubMed  Google Scholar 

  49. Pearce LL, Wasserloos K, St. Croix CM, Gandley R, Levitan ES, Pitt BR, (2000) Metallothionein, nitric oxide and zinc homeostasis in vascular endothelial cells. J Nutr 130(5S Suppl):1467S-1470S

    Article  CAS  PubMed  Google Scholar 

  50. Palmiter RD (1998) The elusive function of metallothioneins. Proc Nat Acad Sci 95(15):8428–8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cortese-Krott MM, Kulakov L, Opländer C, Kolb-Bachofen V, Kröncke K-D, Suschek CV (2014) Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol 2:945–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi S, Liu X, Pan Z (2018) Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 39(7):1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang L, Teng T, Zhao J, Bian B, Yao W, Yu X, Wang Z, Xu Z, Sun Y (2018) The relationship between serum zinc levels, cardiac markers and the risk of acute myocardial infarction by zinc quartiles. Heart Lung Circ 27(1):66–72

    Article  PubMed  Google Scholar 

  54. Ozyıldırım S, Baltaci AK, Sahna E, Mogulkoc R (2017) Effects of chronic and acute zinc supplementation on myocardial ischemia-reperfusion injury in rats. Biol Trace Elem Res 178(1):64–70

    Article  PubMed  Google Scholar 

  55. Ou O, Allen-Redpath K, Urgast D et al (2013) Plasma zinc’s alter ego is a low-molecular-weight humoral factor. FASEB J 27(9):3672–3682

    Article  CAS  PubMed  Google Scholar 

  56. Griffith TM (2002) Endothelial control of vascular tone by nitric oxide and gap junctions: a haemodynamic perspective. Biorheology 39(3–4):307–318

    CAS  PubMed  Google Scholar 

  57. Tubek S (2007) Role of zinc in regulation of arterial blood pressure and in the etiopathogenesis of arterial hypertension. Biol Trace Elem Res 117(1–3):39–51

    Article  CAS  PubMed  Google Scholar 

  58. Tubek S (2001) Increased absorption of zinc from alimentary tract in primary arterial hypertension. Biol Trace Elem Res 83(1):31–38

    Article  CAS  PubMed  Google Scholar 

  59. Williams CR, Mistry M, Cheriyan AM et al (2019) Zinc deficiency induces hypertension by promoting renal Na+ reabsorption. Am J Physiol Renal Physiol 316(4):F646–F653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Z, Wang W, Liu H, Li S, Zhang D (2019) The association of serum zinc and copper with hypertension: a meta-analysis. J Trace Elem Med Biol 53:41–48

    Article  CAS  PubMed  Google Scholar 

  61. Darroudi S, Saberi-Karimian M, Tayefi M et al (2019) Association between hypertension in healthy participants and zinc and copper status: a population-based study. Biol Trace Elem Res 190(1):38–44

    Article  CAS  PubMed  Google Scholar 

  62. Vivoli G, Bergomi M, Rovesti S, Pinotti M, Caselgrandi E (1995) Zinc, copper, and zinc-or copper-dependent enzymes in human hypertension. Biol Trace Elem Res 49(2–3):97–106

    Article  CAS  PubMed  Google Scholar 

  63. Giebink AW, Vogel PA, Medawala W, Spence DM (2013) C-peptide-stimulated nitric oxide production in a cultured pulmonary artery endothelium is erythrocyte mediated and requires Zn2+. Diabetes Metab Res Rev 29(1):44–52

    Article  CAS  PubMed  Google Scholar 

  64. Suliburska J, Skrypnik K, Szulińska M, Kupsz J, Markuszewski L, Bogdański P (2018) Diuretics, Ca-antagonists, and angiotensin-converting enzyme inhibitors affect zinc status in hypertensive patients on monotherapy: a randomized trial. Nutrients 10(9):1284

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cohen N, Golik A (2006) Zinc balance and medications commonly used in the management of heart failure. Heart Fail Rev 11(1):19–24

    Article  CAS  PubMed  Google Scholar 

  66. Braun LA, Rosenfeldt F (2013) Pharmaco-nutrient interactions–a systematic review of zinc and antihypertensive therapy. Int J Clin Pract 67(8):717–725

    Article  CAS  PubMed  Google Scholar 

  67. Reyes A, Olhaberry J, Leary W, Lockett C, Van Der Byl K (1983) Urinary zinc excretion, diuretics, zinc deficiency and some side-effects of diuretics. S Afr Med J 64(24):936–941

    CAS  PubMed  Google Scholar 

  68. Suliburska J, Bogdanski P, Szulinska M, Pupek-Musialik D (2014) The influence of antihypertensive drugs on mineral status in hypertensive patients. Eur Rev Med Pharmacol Sci 18(1):58–65

    CAS  PubMed  Google Scholar 

  69. Atlihan F, Söylemezoğlu T, Gökçe A, Güvendik G, Satici O (1990) Zinc and copper in congestive heart failure. Turk J Pediatr 32(1):33–38

    CAS  PubMed  Google Scholar 

  70. Farrokhi F, Moohebati M, Aghdaei H et al (2012) Effects of statin therapy on serum trace element status in dyslipidemic patients: results of a randomized placebo-controlled cross-over trial. Clin Lab 58(9–10):1005–1015

    CAS  PubMed  Google Scholar 

  71. Tamura Y (2021) The role of zinc homeostasis in the prevention of diabetes mellitus and cardiovascular diseases. J Atheroscler Thromb 28(11):1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SO and SBB made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work. SO and SBB drafted the work or revised it critically for important intellectual content and approved the version to be published.

Corresponding author

Correspondence to Serhan Ozyildirim.

Ethics declarations

Consent for Publication

Was added.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozyildirim, S., Baltaci, S.B. Cardiovascular Diseases and Zinc. Biol Trace Elem Res 201, 1615–1626 (2023). https://doi.org/10.1007/s12011-022-03292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03292-6

Keywords

Navigation