Skip to main content

The Micronutrient Zinc in Human Health and Disease

  • Chapter
  • First Online:
Emerging Solutions in Sustainable Food and Nutrition Security

Abstract

Zinc is an essential trace element for life, acting as a vital cofactor for more than 300 enzymes involved in physiological reactions and numerous transcription factors responsible for gene expression. Zinc deficiency is prevalent in the developing world and affects about two billion people, leading to various diseases. Zn deficiency can also be the sign for hidden hunger (particularly minerals and vitamins), which can occur without a deficit in energy intake as a result of consuming an energy-dense, but nutrient-poor diet. This chapter explores the attributes, biological functions, regulation of zinc homeostasis at the cellular and molecular level, and highlights the detrimental effects of zinc deficiency on health and emergence of numerous illnesses. Recent Research has revealed the critical role of zinc in immunity, neurodevelopmental and neurodegenerative disorders, cardiovascular disease, obesity, and cancer. These findings emphasize the importance of using zinc in treating various chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Alb:

Albumin

MT:

Metallothionein

MTF-1:

Metal regulatory transcription factor 1

TGC:

Trans-Golgi cisternae

ZIP:

Zrt-/Irt-like protein

Zn:

Zinc

ZnT:

Zn transporter

References

  • Alcantara EH, Shin MY, Feldmann J, Nixon GF, Beattie JH, Kwun IS (2013) Long-term zinc deprivation media accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis 228:46–52. https://doi.org/10.1016/j.atherosclerosis.2013.01.030

    Article  CAS  PubMed  Google Scholar 

  • Allen-Redpath K, Ou O, Beattie JH, Kwun IS, Feldmann J, Nixon GF (2013) Marginal dietary zinc deficiency in vivo induces vascular smooth muscle cell apoptosis in large arteries. Carciovasc Res 99:525–534

    Article  CAS  Google Scholar 

  • Beattie JH, Kwun IS (2004) Is zinc deficiency a risk factor for atherosclerosis? Br J Nutr 91:177–181

    Google Scholar 

  • Beattie JH, Gordon MJ, Duthie SJ, McNeil CJ, Horgan GW, Nixon GF, Feldmann F, Kwun IS (2012) Suboptimal dietary zinc intake promotes vascular inflammation and atherogenesis in a mouse model of atherosclerosis. Mol Nutr Food Res 56:1097–1105

    Google Scholar 

  • Beattie JH, Malavolta M, Korichneva I (2018) Zinc. In: Malavolta M, Mocchegiani E (eds) Trace elements and minerals in health and longevity. Springer, Switzerland, pp 99–131

    Google Scholar 

  • Bin BH, Seo J, Kim ST (2018) Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res 2018:9365747. https://doi.org/10.1155/2018/9365747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x. PMID 17286818

    Article  CAS  PubMed  Google Scholar 

  • Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, Sutherland GR, Schaffner W (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res 22:3167–3173. https://doi.org/10.1093/nar/22.15.3167. PMC 310292. PMID 8065932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd-bredbenner C, Moe G, Beshgetoor D, Berning J (2013) Part 4. Vitamins and minerals. In: Wardlaw’s perspectvies in nutrition. McGraw Hill, New York pp 543–545

    Google Scholar 

  • Cassander M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschella G (2017) Zinc-finger proteins in health and disease. Cell Death Discov 3:17071. https://doi.org/10.1038/cddiscovery.2017.71

    Article  CAS  Google Scholar 

  • Caulfield LE, Black RE (2004) Zinc deficiency. In: Ezzati M (ed) Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, vol 1. World Health Organization, New York pp 257–280. https://apps.who.int/iris/handle/10665/42770

  • Cherasse Y, Urade Y (2017) Dietary zinc acts as a sleep modulator. Int J Mol Sci 18(11):2334. https://doi.org/10.3390/ijms18112334. PMC 5713303. PMID 29113075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins RJ (1989) Theoretical and practical aspects of zincuptakeand absorption. Adv Exp Med Biol 249:3–12

    Article  CAS  PubMed  Google Scholar 

  • Cousins RJ (1994) Metal elements and gene expression. Annu Rev Nutr 14:449–469

    Google Scholar 

  • Cousins RJ (1996) Zinc. In: Filer LJ, Ziegler EE (eds) Present knowledge in nutrition, 7th edn. International Life Science Institute-Nutrition Function, Washington, DC, pp 293–306

    Google Scholar 

  • Da Silva Bandeira V, Pires LV, Hashimoto LL, de Alencar LL, Almondes KGS, Lottenberg SA et al (2017) Association of reduced zinc status with poor glycemic control in individuals with type 2 diabetes mellitus. J Trace Ele Med Biol 44:132–136

    Article  Google Scholar 

  • Dietary reference intakes: DRI (2000) Zinc. In: Dietary reference intakes (DRI), Food and Nutrition Board & Institute of Medicine (eds) A report of the panel of micronutrients. National Institutes of Health, Washington, DC, p 442–501

    Google Scholar 

  • EDHS (2011) Ethiopia Demographic and Health Survey. Central Statistical Agency of Ethiopia, Addis Ababa, Ethiopia and Calverton, Maryland, USA, pp. 135–161

    Google Scholar 

  • Entrez Gene: MTF1 metal-regulatory transcription factor (database) (2022) National Library of Medicine (NIH). Updated 5 Aug 2022. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=4520

  • Fan M, Li W, Wang L, Gu S, Dong S, Chen M, Yin H, Zheng J, Su X, Jin J, Jiang X, Cai J, Liu P, Zheng C (2016) Association of SLC30A8 gene polymorphism with type 2 diabetes, evidence from 46 studies: a meta-analysis. Endocrine 53:381–394

    Article  CAS  PubMed  Google Scholar 

  • Felizola SJ, Nakamura Y, Arata Y, Ise K, Satoh F, Rainey WE, Midorikawa S, Suzuki S, Sasano H (2014) Metallothionein-3 (MT-3) in the human adrenal cortex and its disorders. Endocr Pathol 25:229–235. https://doi.org/10.1007/s12022-013-9280-9. PMID 24242700. S2CID 39871076

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Wuff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33:291–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figlewicz DP, Forhan SE, Hodgson AT, Grodsky GM (1984) 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content. Endocrinology 115:877–881

    Article  CAS  PubMed  Google Scholar 

  • Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4:676–494. https://doi.org/10.3390/nu4070676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  • Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101–1105. https://doi.org/10.1093/jn/137.4.1101. PMID 17374687

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Takeda T, Takagishe T, Fukue K, Kambe T, Fukada T (2017) Physiological rolesof zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67:283–301. https://doi.org/10.1007/s12576-017-0521-4

    Article  CAS  PubMed  Google Scholar 

  • Hasse H, Maret W (2005) Protein tyrosine phosphatases as targets of the comgined insinomimetic effects of zinc and oxidants. Biometals 18:333–338

    Article  Google Scholar 

  • Hernandez-Camacho JD, Vicente-Garcia C, Parsons DS, Navas-Enamorado I (2020) Zinc at the crossroads of exercise and proteostasis. Redox Biol 35:101529. https://doi.org/10.1016/j.redox.2020.101529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IZiNCG (2004) Assessment of the risk of zinc deficiency in populations and options for its control. International Zinc Nutrition Consultative Group Technical document #1. Food Nutr Bull 25(1 Suppl 2):S99–S203

    Google Scholar 

  • KDRI (2000) Dietary Reference Intakes for Koreans. The Korean Nutrition Society, Seoul, pp. 166–192

    Google Scholar 

  • Khalid N, Ahmed A, Bhatti MS, Randhawa MA, Ahmad A, Rafaqat R (2014) A question mark on zinc deficiency in 185 million people in Pakistan—possible way out. Crit Rev Food Sci Nutr 54:1222–1224

    Article  CAS  PubMed  Google Scholar 

  • Kidd MT, Ferket PR, Qureshi MA (1996) Zinc metabolism with special reference to its role in immunity. Worlds Poult Sci J 52:309–324

    Article  Google Scholar 

  • Klug A, Schwabe JWR (1995) Protein motifs 5. Zinc figners. FASEB Journal 9:597–604

    Google Scholar 

  • Kimura T, Kambe T (2016) The function of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17:336. https://doi.org/10.3390/ijms17030336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HH, Prasad AS, Brewer GJ, Owyang C (1989) Zinc absorption in humansmall intestine. Am J Phys 256:G87–G91

    CAS  Google Scholar 

  • Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition 26:1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Cai ZQ, Zhou YM (2015) Deficient zinc levels and myocardial infarction: association between deficient zinc levels and myocardial infarction: a meta-analysis. Biol Trace Elem Res 165:41–50

    Google Scholar 

  • Lonnerdal B (1989) Intestinal absorption of zinc. In: Mills CF (ed) Zinc in human biology. Springer, New York, pp 33–55

    Chapter  Google Scholar 

  • Maret W (2013a) Chapter 12. Zinc and human disease. In: Sigel A, Sigel H, Sigel RKO (eds) Interrelations between essential metal ions and human diseases. Metal ions in life sciences, vol 13. Springer, Dordrecht, pp 389–414. https://doi.org/10.1007/978-94-007-7500-8_12. ISBN 978-94-007-7499-5. PMID 24470098

    Chapter  Google Scholar 

  • Maret W (2013b) Chapter 14. Zinc and the zinc proteome. In: Banci L (ed) Metallomics and the cell. Metal ions in life sciences, vol 12. Springer, Dordrecht, pp 479–501. https://doi.org/10.1007/978-94-007-5561-1_14. ISBN 978-94-007-5561-1. PMID 23595681

    Chapter  Google Scholar 

  • Maywald M, Rink L (2015) Zinc homeostasis and immunosenescence. J Trace Ele Med Biol 29:24-30

    Google Scholar 

  • Ou O, Allen-Redpath K, Urgast D, Gordon MJ, Campbell G, Feldmann J, Nixon GF, Mayer CD, Kwun IS, Beattie JH (2013) Plasma zinc’s alter ego is a low-molecular-weight humoral factor. FASEB J 27:3672–3682

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO Journal 14:639–649

    Google Scholar 

  • Penny M (2004) Zinc protects: the role of zinc in child health. Archived 13 May 2008 at the Wayback Machine

    Google Scholar 

  • Prakash A, Bharti K, Majeed AB (2015) Zinc: indications in brain disorders. Fundam Clin Pharmacol 29(2):131–149. https://doi.org/10.1111/fcp.12110. PMID 25659970. S2CID 21141511

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2003) Zinc deficiency: has been known of for 40 years but ignored by global health organisations. Br Med J 326(7386):409–410. https://doi.org/10.1136/bmj.326.7386.409. PMC 1125304. PMID 12595353

    Article  Google Scholar 

  • Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357. https://doi.org/10.2119/2008-00033.Prasad. PMC 2277319 PMID 18385818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranasinghe P, Sathurapatha WS, Ishara MH, Jayawardana R, Galappatthy P, Katulanda P, Constantine GR (2015) Effects of zinc supplementation on serum lipids: a systematic review and meta-analysis. Nutrition & Metabolism 12:26–41

    Google Scholar 

  • Scudiero R, Cigliano L, Verderame M (2017) Age-related changes of metallothionein1/2 and metallothionein 3 expression in rat brain. C R Biol 340:13–17

    Article  PubMed  Google Scholar 

  • Semrad CE (1999) Zinc and intestinal function. Curr Gastroenterol Rep 1:398–493. https://doi.org/10.1007/s11894-999-0021-7

    Article  CAS  PubMed  Google Scholar 

  • Skalny AV, Aschner M, Tinkov AA (2021) Zinc. Adv Food Nutr Res 96:251–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalnaya RG, Skalny AV, Yurasov VV, Demidov VA, Grabekilis AR, RadyshIV, Tinkov AA (2017) Serum trace elements and electrolytes are associated with fasting lasma glucose and HBA1c in postmenopausal women with type 2 Diabetes Mellitus. Biol Trace Elem Res 177:25–32

    Google Scholar 

  • Skalnaya MG, Skalny AV, Serebryansky EP, Yurasov VV, Skalnaya AA, Tinkov AA (2018) ICP-DRC-MS analysis of serm exxential and toxic element levels in postmenopausal prediabetic women in relation to glycemiccontrol markers. J Trace Ele Med Biol 50:430–434

    Google Scholar 

  • Sugarman B (1983) Zinc and infection. Rev Infect Dis 5(1):137–147. https://doi.org/10.1093/clinids/5.1.137. PMID 6338570

    Article  CAS  PubMed  Google Scholar 

  • Walker CF, Ezzati M, Black R (2009) Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur J Clin Nutr 63:591–597

    Article  Google Scholar 

  • Xiao H, Deng W, Wei G, Chen J, Zheng X, Shi T, Chen X, Wang C, Xi L (2020) A pilot study on zinc isotopic compositions in shallow-water coral skeletons. Geochem Geophys Geosyst 21(11). https://doi.org/10.1029/2020GC009430

  • Yu X, Huang L, Zhao J, Wang Z, Yao W, Wu X, Huang J, Bian B (2018) The relationship between serum zinc level and heart failure: A meta-analysis. Biomed Res Int 2739014. https://doi.org/10.1155/2018/2739014

  • Zalewski PD, Beltrame JF, Wawer AA, Abdo AI, Murgia C (2018) Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Crit Rev Food Sci Nutr 12:1–52

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C100811711).

Declaration of Competing Interest

The authors declare no competing conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Sook Kwun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, YE., Choi, SH., Kwun, IS. (2023). The Micronutrient Zinc in Human Health and Disease. In: Ghosh, S., Kumari Panda, A., Jung, C., Singh Bisht, S. (eds) Emerging Solutions in Sustainable Food and Nutrition Security. Springer, Cham. https://doi.org/10.1007/978-3-031-40908-0_11

Download citation

Publish with us

Policies and ethics