Skip to main content
Log in

Athelia rolfsii Exopolysaccharide Protection Against Kidney Injury in Lead-Exposed Mice via Nrf2 Signaling Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to explore protective efficacy of Athelia rolfsii exopolysaccharides (AEPS) to mice kidney against lead-exposed injury with a focus on the role of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway. Lead accumulation in the kidney induces oxidative stress which causes low antioxidant activity, abnormal pathological changes, and apoptosis. Here, the changes in lead levels in the kidney and whole blood proved that AEPS inhibited lead accumulation. It might be related to AEPS enhancing glutathione (GSH) levels and glutathione-s-transferase (GST) activities, as well as the protein abundances of multidrug resistance–associated protein 1 (MRP1) and multidrug resistance–associated protein 2 (MRP2). Moreover, AEPS increased antioxidant activity by upregulating superoxide dismutase (SOD), catalase (CAT) activities, downregulating malondialdehyde (MDA) levels. It also restored kidney function by decreasing blood urea nitrogen (BUN) and creatinine (CRE) levels in the serum. Histopathologic analysis showed that AEPS alleviated the kidney injury induced by lead, too. AEPS also showed anti-apoptosis effect by downregulating caspase-3 and bax expression and upregulating bcl-2 expression. Importantly, AEPS activated Nrf2 signaling pathway by promoting nuclear translocation of Nrf2. However, all-trans-retinoic acid (ATRA), an Nrf2 inhibitor, reversed the effects on AEPS to activation of Nrf2, enhancement of antioxidant, alleviation of kidney injury, restoration of kidney function, prevention of apoptotic, and facilitation of lead exclusion. In brief, AEPS showed kidney protective effect and facilitated lead-expulsion in an Nrf2-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gottesfeld P, Pokhrel AK (2011) Review: Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. J Occup Environ Hyg 8(9):520–532. https://doi.org/10.1080/15459624.2011.601710

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M (2012) Cellular transport and homeostasis of essential and nonessential metals. Metallomics 4(7):593–605. https://doi.org/10.1039/c2mt00185c

    Article  CAS  PubMed  Google Scholar 

  3. Amin I, Hussain I, Rehman MU, Mir BA, Ahmad P (2020) Zingerone prevents lead-induced toxicity in liver and kidney tissues by regulating the oxidative damage in Wistar rats. J Food Biochem 45(3):13241. https://doi.org/10.1111/jfbc.13241

    Article  CAS  Google Scholar 

  4. Kaur I, Behl T, Aleya L, Rahman MH, Kumar A, Arora S, Akter R (2021) Role of metallic pollutants in neurodegeneration: effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. Environ Sci Pollut Res 28(8):8989–9001. https://doi.org/10.1007/s11356-020-12255-0

    Article  CAS  Google Scholar 

  5. Jiang X, Xing X, Zhang Y, Zhang C, Wu Y, Chen Y, Meng R, Jia H, Cheng Y, Zhang Y, Su J (2021) Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol Environ Saf 207:111231. https://doi.org/10.1016/j.ecoenv.2020.111231

    Article  CAS  PubMed  Google Scholar 

  6. Cai SZ, Zhao LN, Liu J, Ji YT, Che Y (2019) Allicin alleviates lead-induced hematopoietic stem cell aging by upregulating PKM2. Biosci Rep 39(7):BSR20190243. https://doi.org/10.1042/BSR20190243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roy A, Kordas K (2016) The relation between low-level lead exposure and oxidative stress: a review of the epidemiological evidence in children and non-occupationally exposed adults. Curr Environ Health Rep 3(4):478–492. https://doi.org/10.1007/s40572-016-0115-y

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Feng X, Hu X, Sha J, Li B, Zhang H, Fan H (2018) Dexmedetomidine ameliorates acute stress-induced kidney injury by attenuating oxidative stress and apoptosis through inhibition of the ROS/JNK signaling pathway. Oxid Med Cell Longev 2018:4035310. https://doi.org/10.1155/2018/4035310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953. https://doi.org/10.1128/MCB.24.24.10941-10953.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26(8):2887–2900. https://doi.org/10.1128/MCB.26.8.2887-2900.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song Y, Sun H, Gao S, Tang K, Zhao Y, Xie G, Gao H (2020) Saikosaponin a attenuates lead-induced kidney injury through activating Nrf2 signaling pathway. Comp Biochem Physiol C: Toxicol Pharmacol 242:108945. https://doi.org/10.1016/j.cbpc.2020.108945

    Article  CAS  PubMed  Google Scholar 

  12. Chen C, Han X, Wang G, Liu D, Bao L, Jiao C, Luan J, Hou Y, Xu Y, Wang H, Zhang Q, Zhou H, Fu J, Pi J (2021) Nrf2 deficiency aggravates the kidney injury induced by subacute cadmium exposure in mice. Arch Toxicol 95(3):883–893. https://doi.org/10.1007/s00204-020-02964-3

    Article  CAS  PubMed  Google Scholar 

  13. Dong J, Li H, Min W (2018) Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc). Int J Biol Macromol 113:20–28. https://doi.org/10.1016/j.ijbiomac.2018.01.223

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Wei M, Min W, Gao Y, Liu X, Liu J (2016) Removal of heavy metal ions in aqueous solution by exopolysaccharides from Athelia rolfsii. Biocatal Agric Biotechnol 6(28–32):13. https://doi.org/10.1016/j.bcab.2016.01.013

    Article  Google Scholar 

  15. Li B, Li H, Gao Y, Fan C, Min W (2019) Inhibitory effect of Athelia rolfsii exopolysaccharides on organ damage in lead-exposed Kunming strain mice. Food Funct 10(2):1159–1166. https://doi.org/10.1039/c8fo02558d

    Article  CAS  PubMed  Google Scholar 

  16. Zhai Q, Liu Y, Wang C, Qu D, Zhao J, Zhang H, Tian F, Chen W (2019) Lactobacillus plantarum CCFM8661 modulates bile acid enterohepatic circulation and increases lead excretion in mice. Food Funct 10(3):1455–1464. https://doi.org/10.1039/c8fo02554a

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Yan Y, Yu X, Li W, Li B, Qin C (2015) Protective effects of chitosan and its water-solublederivatives against lead-induced oxidative stress in mice. Int J Biol Macromol 83:442–449. https://doi.org/10.1016/j.ijbiomac.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  18. Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, Cheng C, Ming QL, Liu CM (2019) Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol 134:110824. https://doi.org/10.1016/j.fct.2019.110824

    Article  CAS  PubMed  Google Scholar 

  19. de Sousa RA, Sabarense CM, Prado GL, Metze K, Cadore S (2013) Lead biomonitoring in different organs of lead intoxicated rats employing GFAAS and different sample preparations. Talanta 104:90–96. https://doi.org/10.1016/j.talanta.2012.11.043

    Article  CAS  PubMed  Google Scholar 

  20. Liu P, Xue Y, Zheng B, Liang Y, Zhang J, Shi J, Chu X, Han X, Chu L (2021) Crocetin attenuates the oxidative stress, inflammation and apoptosis in arsenic trioxide-induced nephrotoxic rats: implication of PI3K/AKT pathway. Int Immunopharmacol 88:106959. https://doi.org/10.1016/j.intimp.2020.106959

    Article  CAS  Google Scholar 

  21. Ko JW, Shin NR, Jung TY, Shin IS, Moon C, Kim SH, Lee IC, Kim SH, Yun WK, Kim HC, Kim JC (2019) Melatonin attenuates cisplatin-induced acute kidney injury in rats via induction of anti-aging protein, Klotho. Food Chem Toxicol 129:201–210. https://doi.org/10.1016/j.fct.2019.04.049

    Article  CAS  PubMed  Google Scholar 

  22. Lin X, Yang F, Huang J, Jiang S, Tang Y, Li J (2020) Ameliorate effect of pyrroloquinoline quinone against cyclophosphamideinduced nephrotoxicity by activating the Nrf2 pathway and inhibiting the NLRP3 pathway. Life Sci 256:117901. https://doi.org/10.1016/j.lfs.2020.117901

    Article  CAS  PubMed  Google Scholar 

  23. Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224(2):171–184. https://doi.org/10.1016/j.canlet.2004.09.042

    Article  CAS  PubMed  Google Scholar 

  24. Yong L, Li Q, WanY CZ (2011) MRP proteins as potential mediators of heavy metal resistance in zebrafish cells. Comp Biochem Physiol C: Toxicol Pharmacol 153(3):310–317. https://doi.org/10.1016/j.cbpc.2010.12.001

    Article  CAS  Google Scholar 

  25. Zalups RK, Joshee L, Bridges CC (2014) Novel Hg2+-induced nephropathy in rats and mice lacking Mrp2: evidence of axial heterogeneity in the handling of Hg2+ along the proximal tubule. Toxicol Sci 142(1):250–260. https://doi.org/10.1093/toxsci/kfu171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yong L, Li Q, Cui Z (2011) Molecular analysis and heavy metal detoxification of ABCC1/MRP1 in zebrafish. Mol Biol Rep 38(3):1703–1711. https://doi.org/10.1007/s11033-010-0283-z

    Article  CAS  Google Scholar 

  27. Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JBT, Bjrklund G (2020) Sulfhydryl groups as targets of mercury toxicity. Coord Chem Rev 417:213343. https://doi.org/10.1016/j.ccr.2020.213343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Devóz PP, Reis MBD, Gomes WR, Maraslis FT, Ribeiro DL, Antunes LMG, Batista BL, Grotto D, Reis RM, Barbosa FJ, Barcelos GRM (2020) Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. Chemosphere 269:128758. https://doi.org/10.1016/j.chemosphere.2020.128758

    Article  CAS  PubMed  Google Scholar 

  29. Kirtane AJ, Leder DM, Waikar SS, Chertow GM, Ray KK, Pinto DS, Karmpaliotis D, Burger AJ, Murphy SA, Cannon CP (2005) Serum blood urea nitrogen as an independent marker of subsequent mortality among patients with acute coronary syndromes and normal to mildly reduced glomerular filtration rates. J Am Coll Cardiol 45(11):1781–1786. https://doi.org/10.1016/j.jacc.2005.02.068

    Article  CAS  PubMed  Google Scholar 

  30. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2020) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350

    Article  CAS  PubMed  Google Scholar 

  31. Ighodaro OM, Akinloye OA (2017) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  32. Giuseppina B, Stefania P, Martina D, Chiara D, Alessia A, Paolo CG, Giulio G, Angele CM, Maria G, Fabrizio G (2018) Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants 7(8):102. https://doi.org/10.3390/antiox7080102

    Article  CAS  Google Scholar 

  33. Mas-Bargues C, Escrivá C, Dromant M, Borrás C, Viña J (2021) Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch Biochem Biophys 709:108941. https://doi.org/10.1016/j.abb.2021.108941

    Article  CAS  PubMed  Google Scholar 

  34. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418. https://doi.org/10.1023/a:1009616228304

    Article  CAS  PubMed  Google Scholar 

  35. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  36. Xu X, Lai Y, Hua Z (2018) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39(1):BSR20180992. https://doi.org/10.1042/BSR20180992

    Article  Google Scholar 

  37. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647–656. https://doi.org/10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  38. Hou G, Surhio MM, Ye H, Gao X, Ye Z, Li J, Ye M (2018) Protective effects of a Lachnum polysaccharide against liver and kidney injury induced by lead exposure in mice. Int J Biol Macromol 124:716–723. https://doi.org/10.1016/j.ijbiomac.2018.11.133

    Article  CAS  PubMed  Google Scholar 

  39. Bradberry S, Vale A (2009) A comparison of sodium calcium edetate (edetate calcium disodium) and succimer (DMSA) in the treatment of inorganic lead poisoning. Clin Toxicol 47(9):841–858. https://doi.org/10.3109/15563650903321064

    Article  CAS  Google Scholar 

  40. Rajak C, Singh N, Parashar P (2020) Metal toxicity and natural antidotes: prevention is better than cure. Environ Sci Pollut Res 27(35):43582–43598. https://doi.org/10.1007/s11356-020-10783-3

    Article  CAS  Google Scholar 

  41. Wang Y, Fang J, Huang S, Chen L, Fan G, Wang C (2012) The chronic effects of low lead level on the expressions of Nrf2 and Mrp1 of the testes in the rats. Environ Toxicol Pharmacol 35(1):109–116. https://doi.org/10.1016/j.etap.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Lan T, Yun C, Yang K, Du Z, Luo X, Hao E, Deng J (2020) Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative strevss ia Nrf2 pathway. Chin Herb Med 12(1):36–46. https://doi.org/10.1016/j.chmed.2019.12.002

    Article  PubMed  Google Scholar 

  43. Piet B, Raymond E, Marcel K, Jan W (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92(16):1295–1302. https://doi.org/10.1093/jnci/92.16.1295

    Article  Google Scholar 

  44. Okada K, Shoda J, Taguchi K, Maher JM, Ishizaki K, Inoue Y, Ohtsuki M, Goto N, Takeda K, Utsunomiya H, Oda K, Warabi E, Ishii T, Osaka K, Hyodo I, Yamamoto M (2008) Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice. Am J Physiol-Gastrointest Liver Physiol 295(4):735–747. https://doi.org/10.1152/ajpgi.90321.2008

  45. Ibbotson K, Yell J, Ronaldson PT (2017) Nrf2 signaling increases expression of ATP-binding cassette subfamily C mRNA transcripts at the blood-brain barrier following hypoxia-reoxygenation stress. Fluids Barriers CNS 14(1):6. https://doi.org/10.1186/s12987-017-0055-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hazelhoff MH, Torres AM (2018) Gender differences in mercury-induced hepatotoxicity: potential mechanisms. Chemosphere Environ Toxicol Risk Assess 202:330–338. https://doi.org/10.1016/j.chemosphere.2018.03.106

    Article  CAS  Google Scholar 

  47. Leslie EM, Deeley RG, Cole SPC (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204(3):216–237. https://doi.org/10.1016/j.taap.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  48. Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275(43):33404–33408. https://doi.org/10.1074/jbc.M007030200

    Article  CAS  PubMed  Google Scholar 

  49. Vernhet L, Allain N, Payen L, Anger JP, Guillouzo A, Fardel O (2001) Resistance of human multidrug resistance-associated protein 1-overexpressing lung tumor cells to the anticancer drug arsenic trioxide 1. Biochem Pharmacol 61(11):1387–1391. https://doi.org/10.1016/s0006-2952(01)00606-2

    Article  CAS  PubMed  Google Scholar 

  50. Valenzuela M, Glorieux C, Stockis J, Sid B, Sandoval JM, Felipe KB, Kviecinski MR, Verrax J, Calderon PB (2014) Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells. Br J Cancer 111(5):874–882. https://doi.org/10.1038/bjc.2014.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

We would like to thank all participants involved in this study. Pan Zhao designed experiments, carried out the experiments, and prepared the manuscript. Hongmei Li supervised the manuscript and revised the final version of the manuscript. ZhiChao Wang carried out the experiments. Weihong Min and Yawen Gao supervised the manuscript.

Corresponding author

Correspondence to Hongmei Li.

Ethics declarations

Ethics Approval

The experiment procedures were approved by the guidelines of the Jilin Agricultural University Institutional Animal Care and Use Committee (Jilin, China) (approval number: 2021 04 13 001).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Disclaimer

All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Li, H., Wang, Z. et al. Athelia rolfsii Exopolysaccharide Protection Against Kidney Injury in Lead-Exposed Mice via Nrf2 Signaling Pathway. Biol Trace Elem Res 201, 1864–1877 (2023). https://doi.org/10.1007/s12011-022-03287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03287-3

Keywords

Navigation