Skip to main content

Advertisement

Log in

Metal toxicity and natural antidotes: prevention is better than cure

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Toxicity due to heavy metals (HM), specifically mercury (Hg), arsenic (As), lead (Pb), and cadmium (Cd) remains a challenge to scientists till date. This review gives insights into natural antidotes for the management and prevention of HM toxicity. Various databases such as PubMed, Embase, and Science Direct were searched for available facts on natural antidotes and their commercial products against HM toxicity till date. Toxicity owing to such metals needs prevention rather than therapy. Natural antidotes, fruits and vegetables, rich in antioxidant are the answers to such toxicities. Synthetic chelators impart a major drawback of removing essential metals required for normal body function, along with the toxic one. Natural antioxidants are bestowed with scavenging and chelation properties and can be alternative for synthetic chelating agents. Natural compounds are abundantly available, economic, and have minimal side effects when compared with classical chelators. Prevention is better than cure and thus adding plentiful vegetables and fruits to our diet can combat HM toxicity-related illness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Aaseth J, Ajsuvakova OP, Skalny AV, Skalnaya MG, Tinkov AA (2018) Chelator combination as therapeutic strategy in mercury and lead poisonings. Coord Chem Rev 358:1–12

    CAS  Google Scholar 

  • Achparaki M, Thessalonikeos E, Tsoukali H, Mastrogianni O, Zaggelidou E, Chatzinikolaou F et al (2012) Heavy metals toxicity. Aristotle Univ Med J 39(1):29–34

    Google Scholar 

  • Agarwal R, Goel SK, Behari JR (2010) Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol 30(5):457–468

    CAS  Google Scholar 

  • Amadi CN, Offor SJ, Frazzoli C, Orisakwe OE (2019a) Natural antidotes and management of metal toxicity. Environ Sci Pollut Res 26(18):18032–18052

    CAS  Google Scholar 

  • Amadi CN, Offor SJ, Frazzoli C, Orisakwe OE (2019b) Natural antidotes and management of metal toxicity. Environ Sci Pollut Res:1–21

  • Andersen O (1999) Principles and recent developments in chelation treatment of metal intoxication. Chem Rev 99(9):2683–2710

    CAS  Google Scholar 

  • Andersen O, Aaseth J (2002) Molecular mechanisms of in vivo metal chelation: implications for clinical treatment of metal intoxications. Environ Health Perspect 110(suppl 5):887–890

    CAS  Google Scholar 

  • Aposhian HV, Maiorino RM, Gonzalez-Ramirez D, Zuniga-Charles M, Xu Z, Hurlbut KM, Junco-Munoz P, Dart RC, Aposhian MM (1995) Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97(1-3):23–38

    Google Scholar 

  • Arslan-Acaroz D, Bayşu-Sozbilir N (2020) Ameliorative effect of boric acid against formaldehyde-induced oxidative stress in A549 cell lines. Environ Sci Pollut Res 27(4):4067–4074

    CAS  Google Scholar 

  • Arslan-Acaroz D, Zemheri F, Demirel HH, Kucukkurt I, Ince S, Eryavuz A (2018) In vivo assessment of polydatin, a natural polyphenol compound, on arsenic-induced free radical overproduction, gene expression, and genotoxicity. Environ Sci Pollut Res 25(3):2614–2622

    CAS  Google Scholar 

  • Asomugha RN, Udowelle NA, Offor SJ, Njoku CJ, Ofoma IV, Chukwuogor CC et al (2016) Heavy metals hazards from Nigerian spices. Roczniki Państwowego Zakładu Higieny 67(3)

  • Basu M, Prasad R, Jayamurthy P, Pal K, Arumughan C, Sawhney R (2007) Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine 14(11):770–777

    CAS  Google Scholar 

  • Bendini A, Toschi TG, Lercker G (2002) Antioxidant activity of oregano (Origanum vulgare L.) leaves. Italian J Food Sci 14(1):17–24

    Google Scholar 

  • Bhattacharya S (2017) Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. Pharm Biol 55(1):349–354

    CAS  Google Scholar 

  • Blanusa M, Varnai VM, Piasek M, Kostial K (2005) Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr Med Chem 12(23):2771–2794

    CAS  Google Scholar 

  • Brewer M (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10(4):221–247

    CAS  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14(5):323–328

    CAS  Google Scholar 

  • Calliste C, Kozlowski D, Duroux J, Champavier Y, Chulia A, Trouillas P (2010) A new antioxidant from wild nutmeg. Food Chem 118(3):489–496

    CAS  Google Scholar 

  • Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects. Reviews of environmental contamination and toxicology. Springer, pp 1–18

  • Chandrasekaran VRM, Hsu D-Z, Liu M-Y (2014) Beneficial effect of sesame oil on heavy metal toxicity. JPEN J Parenter Enteral Nutr 38(2):179–185

    CAS  Google Scholar 

  • Chowdhury R, Dutta A, Chaudhuri SR, Sharma N, Giri AK, Chaudhuri K (2008) In vitro and in vivo reduction of sodium arsenite induced toxicity by aqueous garlic extract. Food Chem Toxicol 46(2):740–751

    CAS  Google Scholar 

  • Christaki E (2012) Hippophae rhamnoides L.(Sea Buckthorn): a potential source of nutraceuticals. Food Public Health 2(3):69

    Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737

    CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3(3):211–216

    CAS  Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80(12):1744–1756

    CAS  Google Scholar 

  • Dorrigiv M, Zareiyan A, Hosseinzadeh H (2020) Garlic (Allium sativum) as an antidote or a protective agent against natural or chemical toxicities: a comprehensive update review. Phytother Res

  • Dua TK, Dewanjee S, Khanra R, Bhattacharya N, Bhaskar B, Zia-Ul-Haq M, de Feo V (2015) The effects of two common edible herbs, Ipomoea aquatica and Enhydra fluctuans, on cadmium-induced pathophysiology: a focus on oxidative defence and anti-apoptotic mechanism. J Transl Med 13(1):245

    Google Scholar 

  • Edenharder R, Grünhage D (2003) Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutat Res Genet Toxicol Environ Mutagen 540(1):1–18

    CAS  Google Scholar 

  • El-Khishin IA, El-Fakharany YMM, Hamid OIA (2015) Role of garlic extract and silymarin compared to dimercaptosuccinic acid (DMSA) in treatment of lead induced nephropathy in adult male albino rats. Toxicol Rep 2:824–832

    CAS  Google Scholar 

  • Ernst E (2002) Heavy metals in traditional Indian remedies. Eur J Clin Pharmacol 57(12):891–896

    CAS  Google Scholar 

  • Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6):989–1003

    CAS  Google Scholar 

  • Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H (2020) Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 43(3):240–254

    CAS  Google Scholar 

  • Farid M, Farid S, Zubair M, Rizwan M, Ishaq HK, Ali S, Ashraf U, Alhaithloul HAS, Gowayed S, Soliman MH (2020) Efficacy of Zea mays L. for the management of marble effluent contaminated soil under Citric acid amendment; morpho-physiological and biochemical response. Chemosphere 240:124930

    CAS  Google Scholar 

  • Flora S (2009) Metal poisoning: threat and management. Al Ameen J Med Sci 2(2):4–26

    CAS  Google Scholar 

  • Flora SJ, Pachauri VJ (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788

    CAS  Google Scholar 

  • Flora S, Kannan G, Pant B, Jaiswal D (2003) The efficacy of monoisoamyl ester of dimercaptosuccinic acid in chronic experimental arsenic poisoning in mice. J Environ Sci Health A 38(1):241–254

    CAS  Google Scholar 

  • Flora S, Bhadauria S, Kannan G, Singh N (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28(2):333

    CAS  Google Scholar 

  • Flora SJ, Chouhan S, Kannan GM, Mittal M, Swarnkar H (2008) Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxidative Med Cell Longev 1(1):39–45

    Google Scholar 

  • Furst A (2002) Can nutrition affect chemical toxicity. Int J Toxicol 21(5):419–424

    CAS  Google Scholar 

  • Gao W, Guo Y, Wang L, Jiang Y, Liu Z, Hong L (2020) Ameliorative and protective effects of fucoidan and sodium alginate against lead-induced oxidative stress in Sprague Dawley rats. Int J Biol Macromol

  • Gautam P, Flora S (2010) Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition 26(5):563–570

    CAS  Google Scholar 

  • González-Montelongo R, Lobo MG, González M (2010) Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem 119(3):1030–1039

    Google Scholar 

  • Goyer R, Cherian M, Jones M, Reigart J (1995) Role of chelating agents for prevention, intervention, and treatment of exposures to toxic metals. Environ Health Perspect 103(11):1048–1052

    CAS  Google Scholar 

  • Graeme KA, Pollack CV Jr (1998) Heavy metal toxicity, part I: arsenic and mercury. J Emerg Med 16(1):45–56

    CAS  Google Scholar 

  • Gubrelay U, Srivastava P, Mathur R, Tripathi N, Flora S (1998) Effects of thiamin and methionine administration in preventing cadmium-induced biochemical alterations and metal concentration in male rats. J Trace Elem Med Biol 12(2):86–90

    CAS  Google Scholar 

  • Gupta R, Flora S (2006) Effect of Centella asiatica on arsenic induced oxidative stress and metal distribution in rats. J Appl Toxicol Int J 26(3):213–222

    CAS  Google Scholar 

  • Heidarian E, Rafieian-Kopaei M (2013) Protective effect of artichoke (Cynara scolymus) leaf extract against lead toxicity in rat. Pharm Biol 51(9):1104–1109

    CAS  Google Scholar 

  • Huang C-H, Li H-J, Wu N-L, Hsiao C-Y, Lin C-N, Chang H-H et al (2016) Photoprotective effects of cycloheterophyllin against UVA-induced damage and oxidative stress in human dermal fibroblasts. PLoS One 11(9)

  • Hussien A-MA, Abd El Mageed AD, Abdel-Baky AM, Hussein MA (2015) Biochemical Effect of Cranberry Extract on Experimental Toxicity with Iron. Benha Vet Med J 29(2):60–73

    Google Scholar 

  • Ince S, Kucukkurt I, Acaroz U, Arslan-Acaroz D, Varol N (2019) Boron ameliorates arsenic-induced DNA damage, proinflammatory cytokine gene expressions, oxidant/antioxidant status, and biochemical parameters in rats. J Biochem Mol Toxicol 33(2):e22252

    Google Scholar 

  • Inoue K (2013) Heavy metal toxicity. J Clinic Toxicol S 3:2161–0495

    Google Scholar 

  • Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152

    CAS  Google Scholar 

  • Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630

    CAS  Google Scholar 

  • Jantan I, Yasin YHM, Jamil S, Sirat H, Basar N (2010) Effect of prenylated flavonoids and chalcones isolated from Artocarpus species on platelet aggregation in human whole blood. J Nat Med 64(3):365–369

    CAS  Google Scholar 

  • Kahyoon OS, AL-Diwan MA and Al-Masoudi WA (2016) Anti-oxidant Activity of Novel Compound (AVO) Derived from L-arginine. UK J Pharm Biosci 4(5):35–46

  • Kalia K, Flora SJ (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47(1):1–21

    CAS  Google Scholar 

  • Kapadia GJ, Azuine MA, Tokuda H, Takasaki M, Mukainaka T, Konoshima T, Nishino H (2002) Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein–Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol Res 45(6):499–505

    CAS  Google Scholar 

  • Kapoor I, Singh B, Singh G, De Heluani CS, De Lampasona M, Catalan CA (2009) Chemistry and in vitro antioxidant activity of volatile oil and oleoresins of black pepper (Piper nigrum). J Agric Food Chem 57(12):5358–5364

    CAS  Google Scholar 

  • Kaur H, Mishra D, Bhatnagar P, Kaushik P, Flora SJ (2009) Co-administration of α-lipoic acid and vitamin C protects liver and brain oxidative stress in mice exposed to arsenic contaminated water. Water Qual Expo Health 1(3-4):135–144

    CAS  Google Scholar 

  • Kaushik G, Satya S, Naik S (2011) Green tea: protective action against oxidative damage induced by xenobiotics. Mediterr J Nutr Metab 4(1):11–31

    Google Scholar 

  • Kilikdar D, Mukherjee D, Mitra E, Ghosh AK, Basu A, Chandra AM, Bandyoapdhyay D (2011) Protective effect of aqueous garlic extract against lead-induced hepatic injury in rats. Cell Tissue Res 13(3):3817–3828

  • Kim HS, Kim YJ, Seo YR (2015) An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev 20(4):232–240

    Google Scholar 

  • Kosnett M (2010) Chelation for heavy metals (arsenic, lead, and mercury): protective or perilous. Clin Pharmacol Ther 88(3):412–415

    CAS  Google Scholar 

  • Krejcarová J, Straková E, Suchý P, Herzig I, Karásková K (2015) Sea buckthorn (Hippophae rhamnoides L.) as a potential source of nutraceutics and its therapeutic possibilities-a review. Acta Vet Brno 84(3):257–268

    Google Scholar 

  • Küçükgergin C, Aydın AF, Özdemirler-Erata G, Mehmetçik G, Koçak-Toker N, Uysal M (2010) Effect of artichoke leaf extract on hepatic and cardiac oxidative stress in rats fed on high cholesterol diet. Biol Trace Elem Res 135(1-3):264–274

    Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115(2):650–656

    CAS  Google Scholar 

  • Li X, Jiang X, Sun J, Zhu C, Li X, Tian L, Liu L, Bai W (2017) Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity. Ann N Y Acad Sci 1398(1):5–19

    CAS  Google Scholar 

  • Lu J, Jiang H, Liu B, Baiyun R, Li S, Lv Y, Li D, Qiao S, Tan X, Zhang Z (2018) Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis. Food Chem Toxicol 116:59–69

    CAS  Google Scholar 

  • Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Moklas MAM et al (2020) Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles: a novel strategy for the treatment of lead-induced hepato-renal toxicity in rats. Saudi J Biol Sci

  • Miladi S, Damak M (2008) In vitro antioxidant activities of Aloe vera leaf skin extracts. J Soc Chim Tunisie 10(10):101–109

    CAS  Google Scholar 

  • Miller AL (1998) Dimercaptosuccinic acid (DMSA), a non-toxic, water-soluble treatment for heavy metal toxicity. Alternat Med Rev J Clin Ther 3(3):199–207

    CAS  Google Scholar 

  • Mitra E, Ghosh AK, Ghosh D, Mukherjee D, Chattopadhyay A, Dutta S, Pattari SK, Bandyopadhyay D (2012) Protective effect of aqueous Curry leaf (Murraya koenigii) extract against cadmium-induced oxidative stress in rat heart. Food Chem Toxicol 50(5):1340–1353

    CAS  Google Scholar 

  • Modi M, Flora S (2007) Combined administration of iron and monoisoamyl-DMSA in the treatment of chronic arsenic intoxication in mice. Cell Biol Toxicol 23(6):429–443

    CAS  Google Scholar 

  • Mohammadi RMS, Soheil A, Karimi H, Sorooshnia R (2015) Natural and anthropogenic source of heavy metals pollution in the soil samples of an industrial complex; a case study. Iranian Journal of Toxicology 9(29):1336–1341

  • Mohammed ET, Hashem KS, Rheim MRA (2014) Biochemical study on the impact of Nigella sativa and virgin olive oils on cadmium-induced nephrotoxicity and neurotoxicity in rats. Am J Physiol Biochem Pharmacol 3(2):71–78

    Google Scholar 

  • Moukette BM, Anatole PC, Biapa CPN, Njimou JR, Ngogang JY (2015) Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis. Toxicol Rep 2:792–805

    Google Scholar 

  • Muchuweti M, Kativu E, Mupure C, Chidewe C, Ndhlala A, Benhura M (2007) Phenolic composition and antioxidant properties of some spices. Am J Food Technol 2(5):414–420

    CAS  Google Scholar 

  • Nøstbakken O, Bredal I, Olsvik P, Huang T, Torstensen B (2012) Effect of marine omega 3 fatty acids on methylmercury-induced toxicity in fish and mammalian cells in vitro. Biomed Res Int 2012

  • Nwanodi O (2017) Homeopathy: curative, concurrent, and supportive cancer treatment potential. J Integr Oncol 6:194. https://doi.org/10.4172/2329-6771.1000194 Page 2 of 7 J Integr Oncol, an open access journal ISSN: 2329-6771 Volume 6• Issue 3• 1000194." cytotoxic, and Phyto was 72: 3

    Article  Google Scholar 

  • Offor SJ, Mbagwu HO, Orisakwe OE (2017) Lead induced hepato-renal damage in male albino rats and effects of activated charcoal. Front Pharmacol 8:107

    Google Scholar 

  • Oguzturk H, Ciftci O, Aydin M, Timurkaan N, Beytur A, Yilmaz F (2012) Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia 44(4):243–249

    CAS  Google Scholar 

  • Okada Y, Tanaka K, Fujita I, Sato E, Okajima H (2005) Antiodidant activity of thiosulfinates derived from garlic. Redox Rep 10(2):96–102

    CAS  Google Scholar 

  • Orhan I, Kartal M, Naz Q, Ejaz A, Yilmaz G, Kan Y, Konuklugil B, Şener B, Iqbal Choudhary M (2007) Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chem 103(4):1247–1254

    CAS  Google Scholar 

  • Pandey S (2016) Chelation therapy and chelating agents of Ayurveda. Int J Green Pharm 10(03)

  • Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11(8):1285–1298

    CAS  Google Scholar 

  • Panghal A, Sathua KB, Flora S (2020) Gallic acid and MiADMSA reversed arsenic induced oxidative/nitrosative damage in rat red blood cells. Heliyon 6(2):e03431

    Google Scholar 

  • Parashar P, Rana P, Dwivedi M, Saraf SA (2019a) Dextrose modified bilosomes for peroral delivery: improved therapeutic potential and stability of silymarin in diethylnitrosamine-induced hepatic carcinoma in rats. J Liposome Res:1–13

  • Parashar P, Tripathi CB, Arya M, Kanoujia J, Singh M, Yadav A, Kaithwas G, Saraf SA (2019b) A synergistic approach for management of lung carcinoma through folic acid functionalized co-therapy of capsaicin and gefitinib nanoparticles: Enhanced apoptosis and metalloproteinase-9 down-regulation. Phytomedicine 53:107–123

    CAS  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41(8-9):1665–1677

    CAS  Google Scholar 

  • Pires VC, Gollücke APB, Ribeiro DA, Lungato L, D'Almeida V, Aguiar O (2013) Grape juice concentrate protects reproductive parameters of male rats against cadmium-induced damage: a chronic assay. Br J Nutr 110(11):2020–2029

    CAS  Google Scholar 

  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev 2017:1–13

    Google Scholar 

  • Ponnusamy K, Mohan M, Nagaraja H (2008) Protective antioxidant effect of Centella asiatica bioflavonoids on lead acetate induced neurotoxicity. Med J Malaysia 63:102–102

    Google Scholar 

  • Pucci D, Bellini T, Crispini A, D'Agnano I, Liguori PF, Garcia-Orduna P et al (2012) DNA binding and cytotoxicity of fluorescent curcumin-based Zn (II) complexes. MedChemComm 3(4):462–468

    CAS  Google Scholar 

  • Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA (2014) Current approaches of the management of mercury poisoning: need of the hour. DARU J Pharm Sci 22(1):46

    Google Scholar 

  • Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia A-a (2017) Cadmium toxicity and treatment: An update. Caspian J Intern Med 8(3):135

    Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236

    CAS  Google Scholar 

  • Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399

    CAS  Google Scholar 

  • Rashid K, Sinha K, Sil PC (2013) An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 62:584–600

    CAS  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184

    CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas F, Adrees M, Zia-ur-Rehman M, Farid M et al (2017) Role of organic and inorganic amendments in alleviating heavy metal stress in oil seed crops. In: P. Ahmad P (ed.) Oil seed crops: Yield and adaptations under environmental stress. John Wiley & Sons, Hoboken, pp 224–235

  • Rodríguez J, Mandalunis PM (2018) A review of metal exposure and its effects on bone health. J Toxicol 4854152

  • Rooney JP (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234(3):145–156

    CAS  Google Scholar 

  • Russo A, Acquaviva R, Campisi A, Sorrenti V, Di Giacomo C, Virgata G et al (2000) Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol Toxicol 16(2):91–98

    CAS  Google Scholar 

  • Sanghamitra S, Hazra J, Upadhyay S, Singh R, Amal R (2008) Arsenic induced toxicity on testicular tissue of mice. Indian J Physiol Pharmacol 52(1):84–90

    Google Scholar 

  • Santos CM, Silva A (2020) The Antioxidant Activity of Prenylflavonoids. Molecules 25(3):696

    CAS  Google Scholar 

  • Sau S, Sathua K, Flora S (2020) MiADMSA minimizes arsenic induced bone degeneration in Sprague Dawley rats. Emerging Contam 6:204–211

    Google Scholar 

  • Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification—a review. ScientificWorldJournal 2013

  • Sharma S, Agarwal M (2014) Studies the role of aloe vera extract in prevention of cadmium induced pathogenicity in thymus of albino rat. J Med Plants 2(1)

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    CAS  Google Scholar 

  • Sharrif Moghaddasi M, Res M (2011) Aloe vera their chemicals composition and applications: a review. Int J Biol Med Res 2(1):466–471

    Google Scholar 

  • Shirpoor A, Minassian S, Salami S, Khadem-Ansari MH, Yeghiazaryan M (2008) Alpha-lipoic acid decreases DNA damage and oxidative stress induced by alcohol in the developing hippocampus and cerebellum of rat. Cell Physiol Biochem 22(5-6):769–776

    CAS  Google Scholar 

  • Singh N, Sharma B (2020) Phytochemicals as therapeutics in feavy metal toxicity. In: Advances in Pharmaceutical Biotechnology. Springer, pp 91–100

  • Singh S, Gautam A, Sharma A, Batra A (2010) Centella asiatica (L.): a plant with immense medicinal potential but threatened. Int J Pharm Sci Rev Res 4(2):003

    Google Scholar 

  • Skoczyńska A, Wojakowska A, Nowacki D, Bobak Ł, Turczyn B, Smyk B et al (2015) Unsaturated fatty acids supplementation reduces blood lead level in rats. Biomed Res Int 2015

  • Someya S, Yoshiki Y, Okubo K (2002) Antioxidant compounds from bananas (Musa Cavendish). Food Chem 79(3):351–354

    CAS  Google Scholar 

  • Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41(6):753–758

    CAS  Google Scholar 

  • Symonowicz M and Kolanek M (2012) Flavonoids and their properties to form chelate complexes. Biotechnology and Food Science 76:35–41

  • Szymanski M (2014) Molecular mechanisms of lead toxicity. BioTechnologia J Biotechnol Comput Biol Bionanotechnol 95(2)

  • Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H (2017) Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iran J Pharm Res 16(Suppl):2–23

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Mol Clin Environ Toxicol Springer:133–164

  • Tripathi CB, Parashar P, Arya M, Singh M, Kanoujia J, Kaithwas G, Saraf SA (2018) QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: in vitro and in vivo evaluation. Drug Deliv Transl Res 8(5):1313–1334

    CAS  Google Scholar 

  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23(9):8244–8259

    CAS  Google Scholar 

  • Xia D, Yu X, Liao S, Shao Q, Mou H, Ma W (2010) Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. J Ethnopharmacol 130(2):414–420

    Google Scholar 

  • Yadav A, Mathur R, Samim M, Lomash V, Kushwaha P, Pathak U, Babbar AK, Singh Flora SJ, Mishra AK, Kaushik MP (2014) Nanoencapsulation of DMSA monoester for better therapeutic efficacy of the chelating agent against arsenic toxicity. Nanomedicine 9(4):465–481

    CAS  Google Scholar 

  • Zhai Q, Narbad A, Chen W (2015) Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 7(1):552–571

    Google Scholar 

  • Zodape G (2010) Effect of Aloe vera Juice on toxicity induced by metal (chromium) in Labeo Rohita (Hamilton). J Appl Sci Res 6(11):1788–1793

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PP: Overall conceptualized this review and involved in revising the manuscript and approval of the final version after exhaustive coverage on all probable aspects of concerned manuscript.

CR and NS were involved in writing, formatting, and editing of the manuscript as well designing of figures and revision of the manuscript.

Corresponding author

Correspondence to Poonam Parashar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajak, C., Singh, N. & Parashar, P. Metal toxicity and natural antidotes: prevention is better than cure. Environ Sci Pollut Res 27, 43582–43598 (2020). https://doi.org/10.1007/s11356-020-10783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10783-3

Keywords

Navigation