Skip to main content
Log in

Role of Combination Treatment of Aspirin and Zinc in DMH-DSS-induced Colon Inflammation, Oxidative Stress and Tumour Progression in Male BALB/c Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Colitis-associated colorectal cancer serves as a prototype of inflammation-associated cancers which is linked with repeated cycles of inflammation and DNA repair deficits. Several preclinical and clinical data reported that aspirin has a chemo-preventive effect in colorectal cancer and is associated with dose-dependent side effects. Furthermore, it has been reported that zinc supplementation improves the quality of life in patients undergoing chemotherapy by alteration of colonic cancer cell gene expression. However, explication of the detailed molecular mechanisms involved in the combined administration of aspirin and zinc-mediated protection against colitis-associated colorectal cancer deserves further investigation. For the induction of colitis-associated colorectal cancer, male BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) 20 mg/kg/bw thrice before the initiation of every DSS cycle (3%w/v in drinking water). One week after the initiation of DSS treatment, aspirin (40 mg/kg; p.o.) and zinc in the form of zinc sulphate (3 mg/kg; p.o.) were administered for 8 weeks. Combination of aspirin and zinc as intervention significantly ameliorated DAI score, myeloperoxidase activity, histological score, apoptotic cells and protein expression of various inflammatory markers including nuclear factor kappa light chain enhancer of activated B cells (NFκBp65), cycloxygenase-2 (COX-2) and interleukin-6 (IL-6); proliferation markers such as proliferating cell nuclear antigen (PCNA), signal transducer and activator of transcription 3 (STAT3) expression significantly decreased, and antioxidant enzymes nuclear factor erythroid 2–related factor 2 (Nrf-2), metallothionein, catalase and superoxide dismutase (SOD) significantly increased as evaluated by immunohistochemistry and western blot analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data and materials support their published claims and comply with field standards. Data will be available on demand.

Abbreviations

CACC:

Colitis-associated colorectal cancer

DMH:

1,2-Dimethylhydrazine

DSS:

Dextran sulphate sodium

NFκBp65:

Nuclear factor kappa light chain enhancer of activated B cells

COX-2:

Cyclooxygenase-2

IL-6:

Interleukin-6

PCNA:

Proliferating cell nuclear antigen

STAT3:

Signal transducer and activator of transcription 3

Nrf-2:

Nuclear factor erythroid 2–related factor 2

IBD:

Inflammatory bowel disease

MPO:

Myeloperoxidase

Caspase-1:

Cysteine aspartases

SOD:

Superoxide dismutase

DAI:

Disease activity index

BSA:

Bovine serum albumin

MT:

Metallothionein

References

  1. Yashiro M (2014) Ulcerative colitis-associated colorectal cancer. World J Gastroenterol 20:16389–16397. https://doi.org/10.3748/wjg.v20.i44.16389

    Article  Google Scholar 

  2. Baek SJ, Kim SH (2017) Colitis-associated colorectal cancer in patients with inflammatory bowel disease. Minerva Chir 72:520–529. https://doi.org/10.23736/S0026-4733.17.07437-5

    Article  Google Scholar 

  3. Azer SA (2013) Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. Eur J Gastroenterol Hepatol 25:271–281. https://doi.org/10.1097/MEG.0b013e32835b5803

    Article  CAS  Google Scholar 

  4. Watson AJ (2006) An overview of apoptosis and the prevention of colorectal cancer. Crit Rev Oncol Hematol 57:107–121. https://doi.org/10.1016/j.critrevonc.2005.06.005

    Article  Google Scholar 

  5. Jessurun J (2017) The differential diagnosis of acute colitis: clues to a specific diagnosis. Surg Pathol Clin 10:863–885. https://doi.org/10.1016/j.path.2017.07.008

    Article  Google Scholar 

  6. Landy J, Ronde E, English N, Clark SK, Hart AL, Knight SC, Ciclitira PJ, Al-Hassi HO (2016) Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol 22:3117–3126. https://doi.org/10.3748/wjg.v22.i11.3117

    Article  CAS  Google Scholar 

  7. Köhnke T, Gomolka B, Bilal S, Zhou X, Sun Y, Rothe M, Baumgart DC, Weylandt KH (2013) Acetylsalicylic acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators. Biomed Res Int 2013.https://doi.org/10.1155/2013/748160

  8. Kane AM, Liu C, Fennell LJ, McKeone DM, Bond CE, Pollock PM, Young G, Leggett BA, Whitehall VLJ (2021) Aspirin reduces the incidence of metastasis in a pre-clinical study of Braf mutant serrated colorectal neoplasia. Br J Cancer 124:1820–1827. https://doi.org/10.1038/s41416-021-01339-4

    Article  CAS  Google Scholar 

  9. Guo Y, Liu Y, Zhang C, Su ZY, Li W, Huang MT, Kong AN (2016) The epigenetic effects of aspirin: the modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane- and dextran sulfate sodium-treated CF-1 mice. Carcinogenesis 37:616–624. https://doi.org/10.1093/carcin/bgw042

    Article  CAS  Google Scholar 

  10. Zhao R, Coker OO, Wu J, Zhou Y, Zhao L, Nakatsu G, Bian X, Wei H, Chan AWH, Sung JJY et al (2020) Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159:969-983.e964. https://doi.org/10.1053/j.gastro.2020.05.004

    Article  CAS  Google Scholar 

  11. Luo C, Zhang H (2017) The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer. Mediators Inflamm 2017:5126048. https://doi.org/10.1155/2017/5126048

    Article  CAS  Google Scholar 

  12. Siracusa R, Fusco R, Peritore AF, Cordaro M, D'Amico R, Genovese T, Gugliandolo E, Crupi R, Smeriglio A, Mandalari G, et al (2020) The antioxidant and anti-inflammatory properties of Anacardium occidentale L. Cashew Nuts in a Mouse Model of Colitis. Nutrients 12. https://doi.org/10.3390/nu12030834

  13. John S, Briatka T, Rudolf E (2011) Diverse sensitivity of cells representing various stages of colon carcinogenesis to increased extracellular zinc: implications for zinc chemoprevention. Oncol Rep 25:769–780. https://doi.org/10.3892/or.2010.1124

    Article  CAS  Google Scholar 

  14. Barresi V, Valenti G, Spampinato G, Musso N, Castorina S, Rizzarelli E, Condorelli DF (2018) Transcriptome analysis reveals an altered expression profile of zinc transporters in colorectal cancer. J Cell Biochem 119:9707–9719. https://doi.org/10.1002/jcb.27285

    Article  CAS  Google Scholar 

  15. Mo D, Liu W, Li Y, Cui W (2019) Long non-coding RNA zinc finger antisense 1 (ZFAS1) regulates proliferation, migration, invasion, and apoptosis by targeting MiR-7–5p in colorectal cancer. Med Sci Monit 25:5150–5158. https://doi.org/10.12659/MSM.916619

    Article  CAS  Google Scholar 

  16. Higashimura Y, Takagi T, Naito Y, Uchiyama K, Mizushima K, Tanaka M, Hamaguchi M, Itoh Y (2020) Zinc deficiency activates the IL-23/Th17 axis to aggravate experimental colitis in mice. J Crohns Colitis 14:856–866. https://doi.org/10.1093/ecco-jcc/jjz193

    Article  Google Scholar 

  17. Soares NRM, de Moura MSB, de Pinho FA, Silva TMC, de Lima Barros SÉ, de Castro Amorim A, Vieira EC, Neto JMM, Parente JML, e Cruz MdSPJP (2018) Zinc supplementation reduces inflammation in ulcerative colitis patients by downregulating gene expression of Zn metalloproteins. 6. pp 119-124

  18. Sakurai K, Furukawa S, Katsurada T, Otagiri S, Yamanashi K, Nagashima K, Onishi R, Yagisawa K, Nishimura H, Ito T et al (2021) Effectiveness of administering zinc acetate hydrate to patients with inflammatory bowel disease and zinc deficiency: a retrospective observational two-center study. Intest Res. https://doi.org/10.5217/ir.2020.00124

    Article  Google Scholar 

  19. Jin S, Wu X (2019) Aspirin inhibits colon cancer cell line migration through regulating epithelial-mesenchymal transition via Wnt signaling. Oncol Lett 17:4675–4682. https://doi.org/10.3892/ol.2019.10089

    Article  CAS  Google Scholar 

  20. Christudoss P, Selvakumar R, Pulimood AB, Fleming JJ, Mathew G (2013) Protective role of aspirin, vitamin C, and zinc and their effects on zinc status in the DMH-induced colon carcinoma model. Asian Pac J Cancer Prev 14:4627–4634. https://doi.org/10.7314/apjcp.2013.14.8.4627

    Article  Google Scholar 

  21. Christudoss P, Chacko G, Selvakumar R, Fleming JJ, Pugazhendhi S, Mathew G (2018) Expression of metallothionein after administration of aspirin, vitamin C or zinc supplement in the DMH Induced colon carcinoma in rat. Asian Pac J Cancer Prev 19:3237–3244. https://doi.org/10.31557/apjcp.2018.19.11.3237

    Article  CAS  Google Scholar 

  22. Yoshikawa Y, Adachi Y, Yasui H, Hattori M, Sakurai H (2011) Oral administration of Bis(aspirinato)zinc(II) complex ameliorates hyperglycemia and metabolic syndrome-like disorders in spontaneously diabetic KK-A(y) mice: structure-activity relationship on zinc-salicylate complexes. Chem Pharm Bull (Tokyo) 59:972–977. https://doi.org/10.1248/cpb.59.972

    Article  CAS  Google Scholar 

  23. Sugihara Y, Zuo X, Takata T, Jin S, Miyauti M, Isikado A, Imanaka H, Tatsuka M, Qi G, Shimamoto F (2017) Inhibition of DMH-DSS-induced colorectal cancer by liposomal bovine lactoferrin in rats. Oncol Lett 14:5688–5694. https://doi.org/10.3892/ol.2017.6976

    Article  CAS  Google Scholar 

  24. Kumar S, Agnihotri N (2019) Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed Pharmacother 109:1462–1477. https://doi.org/10.1016/j.biopha.2018.10.182

    Article  CAS  Google Scholar 

  25. Kumar S, Agnihotri N (2021) Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer. Mol Cell Biochem 476:1765–1781. https://doi.org/10.1007/s11010-020-04044-7

    Article  CAS  Google Scholar 

  26. Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA et al (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348:891–899. https://doi.org/10.1056/NEJMoa021735

    Article  CAS  Google Scholar 

  27. Garcia-Albeniz X, Chan AT (2011) Aspirin for the prevention of colorectal cancer. Best Pract Res Clin Gastroenterol 25:461–472. https://doi.org/10.1016/j.bpg.2011.10.015

    Article  CAS  Google Scholar 

  28. Li J, Chen H, Wang B, Cai C, Yang X, Chai Z, Feng W (2017) ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci Rep 7:43126. https://doi.org/10.1038/srep43126

    Article  CAS  Google Scholar 

  29. Trivedi PP, Jena GB, Tikoo KB, Kumar V (2016) Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis-associated colon carcinogenesis. Mol Carcinog 55:255–267. https://doi.org/10.1002/mc.22274

    Article  CAS  Google Scholar 

  30. Shimura T, Toden S, Komarova NL, Boland C, Wodarz D, Goel A (2020) A comprehensive in vivo and mathematic modeling-based kinetic characterization for aspirin-induced chemoprevention in colorectal cancer. Carcinogenesis 41:751–760. https://doi.org/10.1093/carcin/bgz195

    Article  CAS  Google Scholar 

  31. Brennan CA, Nakatsu G, Gallini Comeau CA, Drew DA, Glickman JN, Schoen RE, Chan AT, Garrett WS (2021) Aspirin modulation of the colorectal cancer-associated microbe Fusobacterium nucleatum. mBio 12. https://doi.org/10.1128/mBio.00547-21

  32. Rohwer N, Kühl AA, Ostermann AI, Hartung NM, Schebb NH, Zopf D, McDonald FM, Weylandt KH (2020) Effects of chronic low-dose aspirin treatment on tumor prevention in three mouse models of intestinal tumorigenesis. Cancer Med 9:2535–2550. https://doi.org/10.1002/cam4.2881

    Article  CAS  Google Scholar 

  33. Tian Y, Ye Y, Gao W, Chen H, Song T, Wang D, Mao X, Ren C (2011) Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. Int J Colorectal Dis 26:13–22. https://doi.org/10.1007/s00384-010-1060-0

    Article  Google Scholar 

  34. Mahmoud NN, Dannenberg AJ, Mestre J, Bilinski RT, Churchill MR, Martucci C, Newmark H, Bertagnolli MM (1998) Aspirin prevents tumors in a murine model of familial adenomatous polyposis. Surgery 124:225–231

    Article  CAS  Google Scholar 

  35. Sturniolo GC, Fries W, Mazzon E, Di Leo V, Barollo M, D’Inca R (2002) Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med 139:311–315. https://doi.org/10.1067/mlc.2002.123624

    Article  CAS  Google Scholar 

  36. Luk HH, Ko JK, Fung HS, Cho CH (2002) Delineation of the protective action of zinc sulfate on ulcerative colitis in rats. Eur J Pharmacol 443:197–204. https://doi.org/10.1016/s0014-2999(02)01592-3

    Article  CAS  Google Scholar 

  37. Tran CD, Ball JM, Sundar S, Coyle P, Howarth GS (2007) The role of zinc and metallothionein in the dextran sulfate sodium-induced colitis mouse model. Dig Dis Sci 52:2113–2121. https://doi.org/10.1007/s10620-007-9765-9

    Article  CAS  Google Scholar 

  38. Ranaldi G, Ferruzza S, Canali R, Leoni G, Zalewski PD, Sambuy Y, Perozzi G, Murgia C (2013) Intracellular zinc is required for intestinal cell survival signals triggered by the inflammatory cytokine TNFα. J Nutr Biochem 24:967–976. https://doi.org/10.1016/j.jnutbio.2012.06.020

    Article  CAS  Google Scholar 

  39. Mohammed Vashist N, Samaan M, Mosli MH, Parker CE, MacDonald JK, Nelson SA, Zou GY, Feagan BG, Khanna R, Jairath V (2018) Endoscopic scoring indices for evaluation of disease activity in ulcerative colitis. Cochrane Database Syst Rev 1: CD011450. https://doi.org/10.1002/14651858.CD011450.pub2

  40. Pai RK, Jairath V, Vande Casteele N, Rieder F, Parker CE, Lauwers GY (2018) The emerging role of histologic disease activity assessment in ulcerative colitis. Gastrointest Endosc 88:887–898. https://doi.org/10.1016/j.gie.2018.08.018

    Article  Google Scholar 

  41. Otali D, Fredenburgh J, Oelschlager DK, Grizzle WE (2016) A standard tissue as a control for histochemical and immunohistochemical staining. Biotech Histochem 91:309–326. https://doi.org/10.1080/10520295.2016.1179342

    Article  CAS  Google Scholar 

  42. Drew DA, Cao Y, Chan AT (2016) Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer 16:173–186. https://doi.org/10.1038/nrc.2016.4

    Article  CAS  Google Scholar 

  43. Ribeiro SMF, Braga CBM, Peria FM, Martinez EZ, Rocha J, Cunha SFC (2017) Effects of zinc supplementation on fatigue and quality of life in patients with colorectal cancer. Einstein (Sao Paulo) 15:24–28. https://doi.org/10.1590/S1679-45082017AO3830

    Article  Google Scholar 

  44. Rosenberg DW, Giardina C, Tanaka T (2009) Mouse models for the study of colon carcinogenesis. Carcinogenesis 30:183–196. https://doi.org/10.1093/carcin/bgn267

    Article  CAS  Google Scholar 

  45. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702. https://doi.org/10.1016/0016-5085(90)90290-h

    Article  CAS  Google Scholar 

  46. Orlando FA, Tan D, Baltodano JD, Khoury T, Gibbs JF, Hassid VJ, Ahmed BH, Alrawi SJ (2008) Aberrant crypt foci as precursors in colorectal cancer progression. J Surg Oncol 98:207–213. https://doi.org/10.1002/jso.21106

    Article  Google Scholar 

  47. Kukitsu T, Takayama T, Miyanishi K, Nobuoka A, Katsuki S, Sato Y, Takimoto R, Matsunaga T, Kato J, Sonoda T et al (2008) Aberrant crypt foci as precursors of the dysplasia-carcinoma sequence in patients with ulcerative colitis. Clin Cancer Res 14:48–54. https://doi.org/10.1158/1078-0432.Ccr-07-1835

    Article  CAS  Google Scholar 

  48. Liu Y, Ju J, Xiao H, Simi B, Hao X, Reddy BS, Huang MT, Newmark H, Yang CS (2008) Effects of combination of calcium and aspirin on azoxymethane-induced aberrant crypt foci formation in the colons of mice and rats. Nutr Cancer 60:660–665. https://doi.org/10.1080/01635580802290215

    Article  CAS  Google Scholar 

  49. Moulahoum H, Boumaza BMA, Ferrat M, Nagy AL, Olteanu DE, Bounaama A, Clichici S (2018) Aberrant crypt foci are regionally affected by zinc treatment in a 1,2-dimethylhydrazine induced colon carcinogenesis model. J Trace Elem Med Biol 47:21–30. https://doi.org/10.1016/j.jtemb.2018.01.009

    Article  CAS  Google Scholar 

  50. Zhang L, Yu J (2013) Role of apoptosis in colon cancer biology, therapy, and prevention. Curr Colorectal Cancer Rep 9:331–340. https://doi.org/10.1007/s11888-013-0188-z

    Article  Google Scholar 

  51. Atari-Hajipirloo S, Nikanfar S, Heydari A, Kheradmand F (2017) Imatinib and its combination with 2,5-dimethyl-celecoxibinduces apoptosis of human HT-29 colorectal cancer cells. Res Pharm Sci 12:67–73. https://doi.org/10.4103/1735-5362.199049

    Article  Google Scholar 

  52. Wu Q-B, Sun G-P (2015) Expression of COX-2 and HER-2 in colorectal cancer and their correlation. World J Gastroenterol 21:6206. https://doi.org/10.3748/wjg.v21.i20.6206

    Article  CAS  Google Scholar 

  53. Gonzalez-Angulo AM, Fuloria J, Prakash O (2002) Cyclooxygenase 2 inhibitors and colon cancer. Ochsner J 4:176–179. https://doi.org/10.1016/S0093-7754(03)70020-7

    Article  Google Scholar 

  54. Roelofs HM, Te Morsche RH, van Heumen BW, Nagengast FM, Peters WH (2014) Over-expression of COX-2 mRNA in colorectal cancer. BMC Gastroenterol 14:1. https://doi.org/10.1186/1471-230x-14-1

    Article  Google Scholar 

  55. Arriaga JM, Levy EM, Bravo AI, Bayo SM, Amat M, Aris M, Hannois A, Bruno L, Roberti MP, Loria FS et al (2012) Metallothionein expression in colorectal cancer: relevance of different isoforms for tumor progression and patient survival. Hum Pathol 43:197–208. https://doi.org/10.1016/j.humpath.2011.04.015

    Article  CAS  Google Scholar 

  56. Arriaga JM, Greco A, Mordoh J, Bianchini M (2014) Metallothionein 1G and zinc sensitize human colorectal cancer cells to chemotherapy. Mol Cancer Ther 13:1369–1381. https://doi.org/10.1158/1535-7163.MCT-13-0944

    Article  CAS  Google Scholar 

  57. Yue SQ, Yang YL, Dou KF, Li KZ (2003) Expression of PCNA and CD44mRNA in colorectal cancer with venous invasion and its relationship to liver metastasis. World J Gastroenterol 9:2863–2865. https://doi.org/10.3748/wjg.v9.i12.2863

    Article  CAS  Google Scholar 

  58. Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H (2018) Role of the NFκB-signaling pathway in cancer. Oncol Rep 11:2063. https://doi.org/10.2147/OTT.S161109

    Article  Google Scholar 

  59. Patel M, Horgan PG, McMillan DC, Edwards J (2018) NF-κB pathways in the development and progression of colorectal cancer. Transl Res 197:43–56. https://doi.org/10.1016/j.trsl.2018.02.002

    Article  CAS  Google Scholar 

  60. Di Paola R, Fusco R, Gugliandolo E, D’Amico R, Cordaro M, Impellizzeri D, Perretti M, Cuzzocrea S (2019) Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol Res 141:591–601. https://doi.org/10.1016/j.phrs.2019.01.041

    Article  CAS  Google Scholar 

  61. Kim SJ, Kim MC, Lee BJ, Park DH, Hong SH, Um JY (2010) Anti-inflammatory activity of chrysophanol through the suppression of NF-kappaB/caspase-1 activation in vitro and in vivo. Molecules 15:6436–6451. https://doi.org/10.3390/molecules15096436

    Article  CAS  Google Scholar 

  62. Waldner MJ, Foersch S, Neurath MF (2012) Interleukin-6 – a key regulator of colorectal cancer development. Int J Biol Sci 8:1248–1253. https://doi.org/10.7150/ijbs.4614

    Article  CAS  Google Scholar 

  63. Unver N, McAllister F (2018) IL-6 family cytokines: key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev 41:10–17. https://doi.org/10.1016/j.cytogfr.2018.04.004

    Article  CAS  Google Scholar 

  64. Shen A, Chen Y, Hong F, Lin J, Wei L, Hong Z, Sferra TJ, Peng J (2012) Pien Tze Huang suppresses IL-6-inducible STAT3 activation in human colon carcinoma cells through induction of SOCS3. Oncol Rep 28:2125–2130. https://doi.org/10.3892/or.2012.2067

    Article  Google Scholar 

  65. Gulbahce-Mutlu E, Baltaci SB, Menevse E, Mogulkoc R, Baltaci AK (2021) The effect of zinc and melatonin administration on lipid peroxidation, IL-6 levels, and element metabolism in DMBA-induced breast cancer in rats. Biol Trace Elem Res 199:1044–1051. https://doi.org/10.1007/s12011-020-02238-0

    Article  CAS  Google Scholar 

  66. Baltaci SB, Mogulkoc R, Baltaci AK, Emsen A, Artac H (2018) The effect of zinc and melatonin supplementation on immunity parameters in breast cancer induced by DMBA in rats. Arch Physiol Biochem 124:247–252. https://doi.org/10.1080/13813455.2017.1392580

    Article  CAS  Google Scholar 

  67. Sadeghi MR, Jeddi F, Soozangar N, Somi MH, Samadi N (2017) The role of Nrf2-Keap1 axis in colorectal cancer, progression, and chemoresistance. Tumour Biol 39:1010428317705510. https://doi.org/10.1177/1010428317705510

    Article  CAS  Google Scholar 

  68. Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, Cheung WK, Chan JY, Reddy BS, Yang CS, Kong AN (2008) Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila) 1:187–191. https://doi.org/10.1158/1940-6207.Capr-08-0028

    Article  CAS  Google Scholar 

  69. Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marques L, Molina AJ, Martin V (2017) The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS ONE 12:e0177549. https://doi.org/10.1371/journal.pone.0177549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial assistance received from the Department of Science and Technology (DST), New Delhi (SERB File Number: CRG/2020/000412). Furthermore, we also acknowledge the National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, for providing financial assistance to undertake the present study.

Funding

The authors are grateful for the financial assistance received from the Department of Science and Technology (DST), New Delhi (SERB File Number: CRG/2020/000412). Furthermore, the authors are thankful to the National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India, for providing financial assistance to carry out the present study.

Author information

Authors and Affiliations

Authors

Contributions

Singothu Siva Nagendra Babu conceived, performed the experiments and analysed the data. Shivani Singla wrote all the sections of the manuscript. G.B. Jena conceived the idea, reviewed the manuscript and administered the project. Finally, all the authors have read and approved the manuscript.

Corresponding author

Correspondence to Gopabandhu Jena.

Ethics declarations

Ethics Approval

All institutional and national guidelines for the care and use of laboratory animals were followed. The animal studies were approved by the Animal Ethics Committee of the NIPER SAS Nagar (IAEC/19/44).

Consent to Participate

Informed consent is not applicable in the present study.

Consent for Publication

All the authors are willing to publish their research work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12011_2022_3241_MOESM1_ESM.tif

Supplementary file1 Supplementary Fig. 1. Representative photomicrographs showing different stages of colitis-associated colorectal cancer stained with methylene blue (0.05%v/v). The lesions were slightly elevated with darkly stained and larger crypts from the surrounding normal mucosa. Normal mucosa characterised with regular round crypts; ACF with dysplasia characterised with enlarged and elongated crypts and the lumen was dilated, thickened and closed along with elongated to oval hyperchromatic nuclei with loss of nuclear polarity; Carcinoma stage exhibits highly pleomorphic nuclei with increased stratification, higher degree of mucin depletion and increased mitotic activity. (TIF 16427 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, S.S.N., Singla, S. & Jena, G. Role of Combination Treatment of Aspirin and Zinc in DMH-DSS-induced Colon Inflammation, Oxidative Stress and Tumour Progression in Male BALB/c Mice. Biol Trace Elem Res 201, 1327–1343 (2023). https://doi.org/10.1007/s12011-022-03241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03241-3

Keywords

Navigation