Skip to main content
Log in

Extracellular Alkalosis Reduces the Neurotoxicity of Zinc Ions in Cultured Cerebellar Granule Neurons

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zn2+ is known to be important for the normal brain functions. Disruption of zinc homeostasis and zinc-induced neurotoxicity has been shown to play a role in the development of neurodegenerative diseases. In this work, we investigated the effect of extracellular alkalosis on the zinc ions neurotoxicity in the cultured rat cerebellar granule neurons. Zinc chloride (0.03–0.06 mM, 24 h) added to the culture medium of rat cerebellar granule neurons caused the dose-dependent death of these cells. According to ultrastructural morphological features, the process of cell death could be attributed to necrosis, since it was accompanied by swelling of intracellular organelles and disruption of cell membranes against the background of relatively intact nuclear membranes. Neuronal death was associated with an increase in the level of intracellular free zinc. The toxic effect of zinc ions was significantly decreased when ionotropic glutamate NMDA-receptors were blocked by MK-801 or when the extracellular pH was increased from 7.3 to 7.8, due to a decrease in the zinc overload of the cytoplasm of these cells. The presented results demonstrate that NMDA channels are one of the Zn ion entry pathways in the cultured cerebellar granule neurons. Extracellular alkalosis reduces the zinc overload of the cytoplasm and, consequently, promotes the survival of neurons. Probably, zinc’s neurotoxicity is inextricably linked with changes in the intracellular concentration of protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data of the paper are available upon request from the corresponding author.

References

  1. Kumar V, Kumar A, Singh K, Avasthi K, Kim JJ (2021) Neurobiology of zinc and its role in neurogenesis. Eur J Nutr 60(1):55–64. https://doi.org/10.1007/s00394-020-02454-3

    Article  Google Scholar 

  2. Higashi Y, Aratake T, Shimizu S, Shimizu T, Saito M (2019) Brain zinc dyshomeostasis and glial cells in ischemic stroke. Nihon Yakurigaku Zasshi. 154(3):138–142. https://doi.org/10.1254/fpj.154.138 (Japanese)

    Article  CAS  Google Scholar 

  3. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784. https://doi.org/10.1152/physrev.00035.2014

    Article  CAS  Google Scholar 

  4. Ji SG, Medvedeva YV, Weiss JH (2020) Zn2+ entry through the mitochondrial calcium uniporter is a critical contributor to mitochondrial dysfunction and neurodegeneration. Exp Neurol 325:113161. https://doi.org/10.1016/j.expneurol.2019.113161

    Article  CAS  Google Scholar 

  5. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. https://doi.org/10.1146/annurev-nutr-033009-083312

    Article  Google Scholar 

  6. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10(11):780–791. https://doi.org/10.1038/nrn2734

    Article  CAS  Google Scholar 

  7. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30(5):1631–1636. https://doi.org/10.1523/JNEUROSCI.5255-09.2010

    Article  CAS  Google Scholar 

  8. Isaev NK, Stelmashook EV, Genrikhs EE (2020) Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer’s disease. Rev Neurosci 31(3):233–243. https://doi.org/10.1515/revneuro-2019-0052

    Article  CAS  Google Scholar 

  9. Wang X, Bai X, Su D, Zhang Y, Li P, Lu S, Gong Y, Zhang W, Tang B (2020) Simultaneous fluorescence imaging reveals N-Methyl-D-aspartic acid receptor dependent Zn2+/H+ flux in the brains of mice with depression. Anal Chem 92(5):4101–4107. https://doi.org/10.1021/acs.analchem.9b05771

    Article  CAS  Google Scholar 

  10. Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75(5):1878–1888. https://doi.org/10.1046/j.1471-4159.2000.0751878.x

    Article  CAS  Google Scholar 

  11. Isaev NK, Stelmashook EV, Lukin SV, Freyer D, Mergenthaler P, Zorov DB (2010) Acidosis-induced zinc-dependent death of cultured cerebellar granule neurons. Cell Mol Neurobiol 30(6):877–883. https://doi.org/10.1007/s10571-010-9516-x

    Article  CAS  Google Scholar 

  12. Weiss JH, Hartley DM, Koh JY, Choi DW (1993) AMPA receptor activation potentiates zinc neurotoxicity. Neuron 10(1):43–49. https://doi.org/10.1016/0896-6273(93)90240-r

    Article  CAS  Google Scholar 

  13. Stelmashook EV, Novikova SV, Amelkina GA, Ivashkin EG, Genrikhs EE, Khaspekov LG, Isaev NK (2015) Acidosis and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) attenuate zinc/kainate toxicity in cultured cerebellar granule neurons. Biochemistry (Mosc) 80(8):1065–1072. https://doi.org/10.1134/S000629791508012X

    Article  CAS  Google Scholar 

  14. Saris NE, Niva K (1994) Is Zn2+ transported by the mitochondrial calcium uniporter? FEBS Lett 356(2–3):195–198. https://doi.org/10.1016/0014-5793(94)01256-3

    Article  CAS  Google Scholar 

  15. Caporale T, Ciavardelli D, Di Ilio C, Lanuti P, Drago D, Sensi SL (2009) Ratiometric-pericam-mt, a novel tool to evaluate intramitochondrial zinc. Exp Neurol 218(2):228–234. https://doi.org/10.1016/j.expneurol.2009.04.003

    Article  CAS  Google Scholar 

  16. Gazaryan IG, Krasinskaya IP, Kristal BS, Brown AM (2007) Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J Biol Chem 282(33):24373–24380. https://doi.org/10.1074/jbc.M611376200

    Article  CAS  Google Scholar 

  17. Feng P, Li T, Guan Z, Franklin RB, Costello LC (2008) The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 7:25. https://doi.org/10.1186/1476-4598-7-25

    Article  CAS  Google Scholar 

  18. Link TA, von Jagow G (1995) Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group. J Biol Chem 270(42):25001–25006. https://doi.org/10.1074/jbc.270.42.25001

    Article  CAS  Google Scholar 

  19. Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KF, Blass JP, Cooper AJ (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem 275(18):13441–13447. https://doi.org/10.1074/jbc.275.18.13441

    Article  CAS  Google Scholar 

  20. Sharpley MS, Hirst J (2006) The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J Biol Chem 281(46):34803–34809. https://doi.org/10.1074/jbc.M607389200

    Article  CAS  Google Scholar 

  21. Morris DR, Levenson CW (2017) Neurotoxicity of zinc Adv Neurobiol 18:303–312. https://doi.org/10.1007/978-3-319-60189-2_15

    Article  Google Scholar 

  22. Golan Y, Alhadeff R, Warshel A, Assaraf YG (2019) ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion. PLoS Comput Biol 15(3):e1006882. https://doi.org/10.1371/journal.pcbi.1006882

    Article  CAS  Google Scholar 

  23. Shusterman E, Beharier O, Shiri L, Zarivach R, Etzion Y, Campbell CR, Lee IH, Okabayashi K, Dinudom A, Cook DI, Katz A, Moran A (2014) ZnT-1 extrudes zinc from mammalian cells functioning as a Zn(2+)/H(+) exchanger. Metallomics 6(9):1656–1663. https://doi.org/10.1039/c4mt00108g

    Article  CAS  Google Scholar 

  24. Isaev NK, Stelmashook EV, Dirnagl U, Plotnikov EY, Kuvshinova EA, Zorov DB (2008) Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. Biochemistry (Mosc) 73(2):149–155. https://doi.org/10.1134/s0006297908020053

    Article  CAS  Google Scholar 

  25. Stelmashook EV, Chetverikov NS, Golyshev SA, Genrikhs EE, Isaev NK (2020) Thymoquinone induces mitochondrial damage and death of cerebellar granule neurons. Biochemistry (Mosc) 85(2):205–212. https://doi.org/10.1134/S0006297920020078

    Article  CAS  Google Scholar 

  26. Isaev NK, Avilkina S, Golyshev SA, Genrikhs EE, Alexandrova OP, Kapkaeva MR, Stelmashook EV (2018) N-acetyl-l-cysteine and Mn2+ attenuate Cd2+-induced disturbance of the intracellular free calcium homeostasis in cultured cerebellar granule neurons. Toxicology 393:1–8. https://doi.org/10.1016/j.tox.2017.10.017

    Article  CAS  Google Scholar 

  27. Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL (2005) Zinc dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis. 8(2):93–108. https://doi.org/10.3233/jad-2005-8202 (discussion 209-2015)

    Article  CAS  Google Scholar 

  28. Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG, Hannun YA (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem. 272(30):18530–18533. https://doi.org/10.1074/jbc.272.30.18530

    Article  CAS  Google Scholar 

  29. Meerarani P, Ramadass P, Toborek M, Bauer HC, Bauer H, Hennig B (2000) Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alpha. Am J Clin Nutr 71(1):81–87. https://doi.org/10.1093/ajcn/71.1.81

    Article  CAS  Google Scholar 

  30. Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 89(1):175–182. https://doi.org/10.1016/s0306-4522(98)00313-3

    Article  CAS  Google Scholar 

  31. Büsselberg D, Michael D, Evans ML, Carpenter DO, Haas HL (1992) Zinc (Zn2+) blocks voltage gated calcium channels in cultured rat dorsal root ganglion cells. Brain Res 593(1):77–81. https://doi.org/10.1016/0006-8993(92)91266-h

    Article  Google Scholar 

  32. Shin YS, Ryall JG, Britto JM, Lau CL, Devenish RJ, Nagley P, Beart PM (2019) Inhibition of bioenergetics provides novel insights into recruitment of PINK1-dependent neuronal mitophagy. J Neurochem 149(2):269–283. https://doi.org/10.1111/jnc.14667

    Article  CAS  Google Scholar 

  33. Lu Q, Haragopal H, Slepchenko KG, Stork C, Li YV (2016) Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int J Physiol Pathophysiol Pharmacol. 8(1):35–43 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859877/)

    CAS  Google Scholar 

  34. Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I (2009) Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem 284(26):17677–17686. https://doi.org/10.1074/jbc.M109.007203

    Article  CAS  Google Scholar 

  35. Kiedrowski L (2011) Cytosolic zinc release and clearance in hippocampal neurons exposed to glutamate - the role of pH and sodium. J Neurochem 117(2):231–243. https://doi.org/10.1111/j.1471-4159.2011.07194.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.K. Isaev, E.V. Stelmashook, and E.E. Genrikhs contributed to conceptualization, contributed to data collection and analyzed the data, and wrote the first draft of the manuscript; E.V. Stelmashook, E.E. Genrikhs, M.O. Shedenkova, and S.A. Golyshev performed the experiments and formal analysis and wrote experimental part of the manuscript; N.K. Isaev edited the figures; and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. N.K. Isaev and E.V. Stelmashook formatted/submitted the paper.

Corresponding author

Correspondence to Nickolay K. Isaev.

Ethics declarations

Ethics Approval

Handling and experimental procedures with animals were carried out in accordance with Council of the European Community directives 86/609/EEC on the use of animals for experimental research. The experimental protocols were approved by the Ethics committee of the Research Center of Neurology (Protocol No. 12–16/19) Moscow, Russia.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Zn2+ caused the death of neurons and increase in the intracellular free zinc

• MK-801 decreased Zn2+-toxicity and intracellular free zinc

• The Zn2+ toxicity decreased with an increase in extracellular pH from 7.3 to 7.8

• An increase in extracellular pH reduces the zinc overload in the cytoplasm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shedenkova, M.O., Stelmashook, E.V., Golyshev, S.A. et al. Extracellular Alkalosis Reduces the Neurotoxicity of Zinc Ions in Cultured Cerebellar Granule Neurons. Biol Trace Elem Res 201, 856–864 (2023). https://doi.org/10.1007/s12011-022-03214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03214-6

Keywords

Navigation