Skip to main content
Log in

Acidosis-Induced Zinc-Dependent Death of Cultured Cerebellar Granule Neurons

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Severe acidosis caused death of cultured cerebellar granule neurons (CGNs). Acidosis was accompanied by a progressive increase of the intracellular zinc ions ([Zn2+]i) and decrease of [Ca2+]i. Zn2+ chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), prevented the increase of [Zn2+]i and acidosis-induced neuronal death. However, neuronal death was insensitive to blockade of ASIC1 channels with amiloride, as CGNs display considerably lower expression of ASIC1a than other neurons. The antioxidant trolox and menadione significantly protected neurons from acidotic death. Earlier, we demonstrated that menadione rescues neurons from the deleterious effect of inhibition of mitochondrial complex I (Isaev et al. Neuroreport 15:2227–2231, 2004). We speculate that excessive Zn2+-dependent production of reactive oxygen species by mitochondrial complex I may be a general motive for the induction of cell death in CGNs under acidotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CGNs:

Cerebellar granule neurons

TPEN:

N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine

ASIC1a:

Acid sensitive ion channel 1a

References

  • Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 276:35361–35367

    Article  CAS  PubMed  Google Scholar 

  • Batandier C, Leverve X, Fontaine E (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol Chem 279:17197–17204

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KF, Blass JP, Cooper AJ (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem 275:13441–13447

    Article  CAS  PubMed  Google Scholar 

  • Colvin RA (2002) pH dependence and compartmentalization of zinc transported across plasma membrane of rat cortical neurons. Am J Physiol Cell Physiol. 282:C317–C329

    CAS  PubMed  Google Scholar 

  • Dedukhova VI, Kirillova GP, Mokhova EN, Rozovskaia IA, Skulachev VP (1986) Effect of menadione and vicasol on mitochondrial energy during inhibition of initiation sites of the respiration chain. Biokhimiia 51:567–573

    CAS  PubMed  Google Scholar 

  • Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85:563–570

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Moskowitz SI, Li R, Lee SB, Esteban M, Tomaselli K, Chan J, Bergold PJ (2000) Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp Neurol 162:1–12

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  • Frazzini V, Rapposelli IG, Corona C, Rockabrand E, Canzoniero LMT, Sensi SL (2007) Mild acidosis enhances AMPA receptor-mediated intracellular zinc mobilization in cortical neurons. Mol Med 13:356–361

    Article  CAS  PubMed  Google Scholar 

  • Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G (1995) Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 15:1172–1179

    CAS  PubMed  Google Scholar 

  • Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP (1997) BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci USA 94:1459–1464

    Article  CAS  PubMed  Google Scholar 

  • Hey JG, Chu XP, Seeds J, Simon RP, Xiong ZG (2007) Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid-sensing ion channels. Stroke 38:670–673

    Article  CAS  PubMed  Google Scholar 

  • Isaev NK, Stelmashook EV, Ruscher K, Andreeva NA, Zorov DB (2004) Menadione reduces rotenone-induced cell death in cerebellar granule neurons. Neuroreport 15:2227–2231

    Article  CAS  PubMed  Google Scholar 

  • Isaev NK, Stelmashook EV, Plotnikov EY, Khryapenkova TG, Lozier ER, Doludin YV, Silachev DN, Zorov DB (2008) Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia. Biochemistry (Mosc) 73:1171–1175

    Article  CAS  Google Scholar 

  • Kim EY, Koh JY, Kim YH, Sohn S, Joe E, Gwag BJ (1999) Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur J Neurosci 11:327–334

    Article  CAS  PubMed  Google Scholar 

  • Link TA, von Jagow G (1995) Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group. J Biol Chem 270:25001–25006

    Article  CAS  PubMed  Google Scholar 

  • Lorusso M, Cocco T, Sardanelli AM, Minuto M, Bonomi F, Papa S (1991) Interaction of Zn2+ with the bovine-heart mitochondrial bc1 complex. Eur J Biochem 197:555–561

    Article  CAS  PubMed  Google Scholar 

  • Mergenthaler P, Dirnagl U, Meisel A (2004) Pathophysiology of stroke: lessons from animal models. Meta Brain Dis 19:151–167

    Article  CAS  Google Scholar 

  • Musleh W, Bruce A, Malfroy B, Baudry M (1994) Effects of EUK-8, a synthetic catalytic superoxide scavenger, on hypoxia- and acidosis-induced damage in hippocampal slices. Neuropharmacology 33:929–934

    Article  CAS  PubMed  Google Scholar 

  • Oy-Yang Y, Kristian T, Mellergarg P, Siejo BK (1994) The influence of pH on glutamate- and depolarization-induced increases of intracellular calcium concentration in cortical neurons in primary culture. Brain Res 646:65–72

    Article  Google Scholar 

  • Pruss H, Prass K, Ghaeni L, Milosevic M, Muselmann C, Freyer D, Royl G, Reuter U, Baeva N, Dirnagl U, Meisel A, Priller J (2008) Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 28:526–539

    Article  PubMed  CAS  Google Scholar 

  • Rehncrona S, Hauge H, Siejo BK (1989) Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: differences in effect by lactic acid and CO2. J Cereb Blood Flow Metab 9:65–70

    CAS  PubMed  Google Scholar 

  • Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, Priller J, Dirnagl U, Meisel A (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22:10291–10301

    CAS  PubMed  Google Scholar 

  • Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci USA 100:6157–6162

    Article  CAS  PubMed  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    Article  CAS  PubMed  Google Scholar 

  • Sharpley MS, Hirst J (2006) The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J Biol Chem 281:34803–34809

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Chan J, Kass IS, Bergold PJ (1995) Transient acidosis induces delayed neurotoxicity in cultured hippocampal slices. Neurosci Lett 185:115–118

    Article  CAS  PubMed  Google Scholar 

  • Sipos I, Tretter L, Adam-Vizi V (2003) Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 84:112–118

    Article  CAS  PubMed  Google Scholar 

  • Stelmashuk EV, Belyaeva EA, Isaev NK (2007) Effect of acidosis, oxidative stress, and glutamate toxicity on the survival of mature and immature cultured cerebellar granule cells. Neurochem J 1:66–69

    Article  Google Scholar 

  • Tombaugh GC, Sapolsky RM (1990) Mechanistic distinctions between excitotoxic and acidotic hippocampal damage in an in vitro model of ischemia. J Cereb Blood Flow Metab 10:527–535

    CAS  PubMed  Google Scholar 

  • Tombaugh GC, Somjen GG (1996) Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J Physiol 493:719–732

    CAS  PubMed  Google Scholar 

  • Wijburg FA, Feller N, de Groot CJ, Wanders RJ (1990) Menadione partially restores NADH-oxidation and ATP-synthesis in complex I deficient fibroblasts. Biochem Int 22:303–309

    Article  CAS  PubMed  Google Scholar 

  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:665–666

    Article  Google Scholar 

  • Xiong Z-G, Chu X-P, Simon RP (2006) Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol 209:59–68

    Article  CAS  PubMed  Google Scholar 

  • Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA 101:6752–6757

    Article  CAS  PubMed  Google Scholar 

  • Ying W, Han S-K, Miller JW, Swanson RA (1999) FAS-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. J Neurochem 73:1549–1556

    Article  CAS  PubMed  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Katharina Stohlmann and Ingo Przesdzing for excellent experimental support. This study was supported by RFBR grants 08-04-00762-a, 08-04-01667-a, 09-04-01096-a and the Deutsche Forschungsgemeinschaft (ME 3603/1-1 to PM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay K. Isaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, N.K., Stelmashook, E.V., Lukin, S.V. et al. Acidosis-Induced Zinc-Dependent Death of Cultured Cerebellar Granule Neurons. Cell Mol Neurobiol 30, 877–883 (2010). https://doi.org/10.1007/s10571-010-9516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9516-x

Keywords

Navigation