Skip to main content
Log in

A Single-Step Digestion for the Quantification and Characterization of Trace Particulate Silica Content in Biological Matrices Using Single Particle Inductively Coupled Plasma-Mass Spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The increased use of amorphous silica nanoparticles (SiNPs) in food products, materials science, cosmetics, and pharmaceuticals has raised questions about potential hazards in the environment and in human health. Although SiNPs are generally thought to be benign, recent studies have demonstrated toxicity in different cell and animal models. Despite their ubiquitous use, SiNPs are rarely analyzed quantitatively. Often, the methods used to analyze silicon and SiNPs are difficult, costly, require the use of dangerous reagents, and are prone to interferences. Additionally, characterization of SiNPs in complex matrices requires extensive sample preparation. To address this, we propose a single-step digestion method for the determination of trace SiNP content in biological matrices. For conventional inductively coupled plasma-mass spectrometry (ICP-MS) analysis, biological samples are often digested with concentrated HNO3. We found that with conventional ICP-MS, lower limits of detection (LLOD) of silicon are too high for trace analysis. However, we found that SiNPs are stable at a strong acidic pH; thus, concentrated HNO3 could be used to digest biological samples leaving SiNPs intact. Then, by analysis with single particle ICP-MS, we found that the smallest SiNP that could be read was 185 nm in size. The concentration for the LLOD was found to be 0.032 ppb with interday variability in sizing and concentration at 2.5% and 6.8% respectively. Utilizing this method, SiNPs were accurately sized and counted in cell pellets and media. Our proposed method can be used to accurately quantify and characterize SiNPs (or agglomerated SiNPs) larger than the derived LLOD in a variety of biological matrices and will assist in determining relationships between exposures of SiNPs and toxicity in humans and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805. https://doi.org/10.1039/C4CS00362D

    Article  CAS  Google Scholar 

  2. Sahu SC, Hayes AW (2017) Toxicity of nanomaterials found in human environment: a literature review. Toxicol Res Appl 1:2397847317726352. https://doi.org/10.1177/2397847317726352

    Article  Google Scholar 

  3. Sajid M, Ilyas M, Basheer C et al (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22:4122–4143. https://doi.org/10.1007/s11356-014-3994-1

    Article  Google Scholar 

  4. Karimi M, Sadeghi R, Kokini J (2018) Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci Technol 75:129–145. https://doi.org/10.1016/j.tifs.2018.03.012

    Article  CAS  Google Scholar 

  5. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 27:1–35. https://doi.org/10.1080/10590500802708267

    Article  CAS  Google Scholar 

  6. Niculescu V-C (2020) Mesoporous silica nanoparticles for bio-applications. Front Mater 7:36. https://doi.org/10.3389/fmats.2020.00036

    Article  Google Scholar 

  7. Dong X, Wu Z, Li X et al (2020) <p>The size-dependent cytotoxicity of amorphous silica nanoparticles: a systematic review of in vitro studies</p>. Int J Nanomedicine 15:9089–9113. https://doi.org/10.2147/IJN.S276105

    Article  CAS  Google Scholar 

  8. Croissant JG, Butler KS, Zink JI, Brinker CJ (2020) Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nat Rev Mater 5:886–909. https://doi.org/10.1038/s41578-020-0230-0

    Article  CAS  Google Scholar 

  9. Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—a nanostructured material. Toxicology 294:61–79. https://doi.org/10.1016/j.tox.2012.02.001

    Article  CAS  Google Scholar 

  10. Chen L, Liu J, Zhang Y et al (2018) The toxicity of silica nanoparticles to the immune system. Nanomed 13:1939–1962. https://doi.org/10.2217/nnm-2018-0076

    Article  Google Scholar 

  11. Merget R, Bauer T, Küpper H et al (2002) Health hazards due to the inhalation of amorphous silica. Arch Toxicol 75:625–634. https://doi.org/10.1007/s002040100266

    Article  CAS  Google Scholar 

  12. Li L, Liu T, Fu C et al (2015) Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine Nanotechnol Biol Med 11:1915–1924. https://doi.org/10.1016/j.nano.2015.07.004

    Article  CAS  Google Scholar 

  13. Waegeneers N, Brasseur A, Van Doren E et al (2018) Short-term biodistribution and clearance of intravenously administered silica nanoparticles. Toxicol Rep 5:632–638. https://doi.org/10.1016/j.toxrep.2018.05.004

    Article  CAS  Google Scholar 

  14. Huang X, Li L, Liu T et al (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5:5390–5399. https://doi.org/10.1021/nn200365a

    Article  CAS  Google Scholar 

  15. Lim J-H, Sisco P, Mudalige TK et al (2015) Detection and characterization of SiO2 and TiO2 nanostructures in dietary supplements. J Agric Food Chem 63:3144–3152. https://doi.org/10.1021/acs.jafc.5b00392

    Article  CAS  Google Scholar 

  16. Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278. https://doi.org/10.1021/ac402980q

    Article  CAS  Google Scholar 

  17. Montoro Bustos AR, Purushotham KP, Possolo A et al (2018) Validation of single particle ICP-MS for routine measurements of nanoparticle size and number size distribution. Anal Chem 90:14376–14386. https://doi.org/10.1021/acs.analchem.8b03871

    Article  CAS  Google Scholar 

  18. Donovan AR, Adams CD, Ma Y et al (2016) Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 144:148–153. https://doi.org/10.1016/j.chemosphere.2015.07.081

    Article  CAS  Google Scholar 

  19. Peters RJB, Oomen AG, van Bemmel G et al (2020) Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology 14:420–432. https://doi.org/10.1080/17435390.2020.1718232

    Article  CAS  Google Scholar 

  20. Bolea-Fernandez E, Leite D, Rua-Ibarz A et al (2017) Characterization of SiO2 nanoparticles by single particle-inductively coupled plasma-tandem mass spectrometry (SP-ICP-MS/MS). J Anal At Spectrom 32:2140–2152. https://doi.org/10.1039/C7JA00138J

    Article  CAS  Google Scholar 

  21. Yang S-A, Choi S, Jeon SM, Yu J (2018) Silica nanoparticle stability in biological media revisited. Sci Rep 8:185. https://doi.org/10.1038/s41598-017-18502-8

    Article  CAS  Google Scholar 

  22. Aureli F, Ciprotti M, D’Amato M et al (2020) Determination of total silicon and SiO2 particles using an ICP-MS based analytical platform for toxicokinetic studies of synthetic amorphous silica. Nanomaterials 10:888. https://doi.org/10.3390/nano10050888

    Article  CAS  Google Scholar 

  23. Montaño MD, Majestic BJ, Jämting ÅK et al (2016) Methods for the detection and characterization of silica colloids by microsecond spICP-MS. Anal Chem 88:4733–4741. https://doi.org/10.1021/acs.analchem.5b04924

    Article  CAS  Google Scholar 

  24. Salou S, Larivière D, Cirtiu C-M, Fleury N (2021) Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS. Anal Bioanal Chem 413:171–181. https://doi.org/10.1007/s00216-020-02989-8

    Article  CAS  Google Scholar 

  25. Pace HE, Rogers NJ, Jarolimek C et al (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma-mass spectrometry. Anal Chem 83:9361–9369. https://doi.org/10.1021/ac201952t

    Article  CAS  Google Scholar 

  26. Li S, Ng YH, Lau HC et al (2020) Experimental investigation of stability of silica nanoparticles at reservoir conditions for enhanced oil-recovery applications. Nanomater Basel Switz 10:E1522. https://doi.org/10.3390/nano10081522

    Article  CAS  Google Scholar 

  27. Bossert D, Urban DA, Maceroni M et al (2019) A hydrofluoric acid-free method to dissolve and quantify silica nanoparticles in aqueous and solid matrices. Sci Rep 9:7938. https://doi.org/10.1038/s41598-019-44128-z

    Article  CAS  Google Scholar 

  28. Wilschefski SC, Baxter MR (2019) Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem Rev 40:115–133. https://doi.org/10.33176/AACB-19-00024

  29. Kanaki K, Pergantis SA (2016) Using nanoparticles to determine the transport efficiency of microflow and nanoflow nebulizers in inductively coupled plasma-mass spectrometry. J Anal At Spectrom 31:1041–1046. https://doi.org/10.1039/C5JA00474H

    Article  CAS  Google Scholar 

  30. Lee S, Bi X, Reed RB et al (2014) Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol 48:10291–10300. https://doi.org/10.1021/es502422v

    Article  CAS  Google Scholar 

  31. Vidmar J, Milačič R, Ščančar J (2017) Sizing and simultaneous quantification of nanoscale titanium dioxide and a dissolved titanium form by single particle inductively coupled plasma mass spectrometry. Microchem J 132:391–400. https://doi.org/10.1016/j.microc.2017.02.030

    Article  CAS  Google Scholar 

  32. Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–391. https://doi.org/10.1038/nnano.2011.58

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health grants R01 DK125351 and T32 ES029074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared M. Brown.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 574 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, K.L., Brown, J.M. A Single-Step Digestion for the Quantification and Characterization of Trace Particulate Silica Content in Biological Matrices Using Single Particle Inductively Coupled Plasma-Mass Spectrometry. Biol Trace Elem Res 201, 816–827 (2023). https://doi.org/10.1007/s12011-022-03163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03163-0

Keyword

Navigation