Skip to main content

Advertisement

Log in

Zinc supplementation ameliorates sorafenib-induced cognitive impairment through ROS/JNK signaling pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Sorafenib, a multiple kinase inhibitor, is widely used in cancer patients. Recently, clinical studies highlighted the relationship between cognitive deficits and sorafenib exposure. Zinc abundant in the body has been reported to exert neuroprotective activities. However, the effects of zinc supplementation on sorafenib-induced cognitive impairment are still unknown. In the current study, we verified that mice challenged with sorafenib displayed characteristic features of cognitive impairment. However, zinc treatment effectively improved these changes. Histopathological staining also showed that zinc significantly alleviated hippocampal microstructural and ultrastructural damages induced by sorafenib. Meanwhile, zinc significantly reduced sorafenib-induced ROS production and neuronal cells apoptosis in vivo and vitro. Additionally, we also investigated whether zinc protected against sorafenib-induced neuronal cells apoptosis via ROS/JNK pathway through treating SH-SY5Y cells with the NAC or the specific JNK activator anisomycin. The results indicated that NAC performed the same protective effects as zinc in sorafenib-challenged SH-SY5Y cells and activation of JNK by anisomycin partly abolished the protective effects of zinc. Collectively, the present study suggested that inhibition of oxidative stress and the JNK pathway might contribute to the protective effects of zinc against sorafenib-caused cognitive impairment in vivo and vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

Code availability

Not applicable.

References

  1. Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, Koltzenburg M, Kiernan MC (2013) Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 63:419–437. https://doi.org/10.3322/caac.21204

    Article  Google Scholar 

  2. Fessas P, Possamai LA, Clark J, Daniels E, Gudd C, Mullish BH, Alexander JL, Pinato DJ (2020) Immunotoxicity from checkpoint inhibitor therapy: clinical features and underlying mechanisms. Immunol 159:167–177. https://doi.org/10.1111/imm.13141

    Article  CAS  Google Scholar 

  3. Bridoux F, Leung N, Belmouaz M, Royal V, Ronco P, Nasr SH, Fermand JP, International K, Monoclonal Gammopathy Research G (2021) Management of acute kidney injury in symptomatic multiple myeloma. Kidney Int 99:570–580. https://doi.org/10.1016/j.kint.2020.11.010

    Article  CAS  Google Scholar 

  4. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, das Dores Cruz F, GoncalvesBrandao SM, Rigaud VOC, Higuchi-Dos-Santos MH, Hajjar LA, KalilFilho R, Hoff PM, Sahade M, Ferrari MSM, de Paula Costa RL, Mano MS, BittencourtViana Cruz CB, Abduch MC, Lofrano Alves MS, Guimaraes GV, Issa VS, Bittencourt MS, Bocchi EA (2018) Carvedilol for Prevention of Chemotherapy-Related Cardiotoxicity: The CECCY Trial. J Am Coll Cardiol 71:2281–2290. https://doi.org/10.1016/j.jacc.2018.02.049

    Article  CAS  Google Scholar 

  5. Nguyen LD, Ehrlich BE (2020) Cellular mechanisms and treatments for chemobrain: insight from aging and neurodegenerative diseases. EMBO Mol Med 12:e12075. https://doi.org/10.15252/emmm.202012075

    Article  CAS  Google Scholar 

  6. Mulder SF, Bertens D, Desar IM, Vissers KC, Mulders PF, Punt CJ, van Spronsen DJ, Langenhuijsen JF, Kessels RP, van Herpen CM (2014) Impairment of cognitive functioning during Sunitinib or Sorafenib treatment in cancer patients: a cross sectional study. BMC Cancer 14:219. https://doi.org/10.1186/1471-2407-14-219

    Article  CAS  Google Scholar 

  7. Dogan E, Aksoy S, Arslan C, Dede DS, Altundag K (2010) Probable sorafenib-induced reversible encephalopathy in a patient with hepatocellular carcinoma. Med Oncol 27:1436–1437. https://doi.org/10.1007/s12032-009-9378-6

    Article  Google Scholar 

  8. Sidhu SS, Agarwal S, Goyal O, Kishore H, Sidhu S (2017) Sorafenib induced hepatic encephalopathy. Acta Gastroenterol Belg 80:537–538

    CAS  Google Scholar 

  9. Sun L, Jiang Y, Yan X, Dai X, Huang C, Chen L, Li T, Zhang Y, Xiao H, Yang M, Xiang L, Zhang Y, Chen S, Li S, Chen A, He F, Lian J (2021) Dichloroacetate enhances the anti-tumor effect of sorafenib via modulating the ROS-JNK-Mcl-1 pathway in liver cancer cells. Exp Cell Res 406:112755. https://doi.org/10.1016/j.yexcr.2021.112755

    Article  CAS  Google Scholar 

  10. AlAsmari AF, Ali N, AlAsmari F, AlAnazi WA, Alqahtani F, Alharbi M, Alotaibi FM, Aldossari AA, AlSwayyed M, Alanazi MM, Alshamrani AA (2020) Elucidation of the Molecular Mechanisms Underlying Sorafenib-Induced Hepatotoxicity. Oxid Med Cell Longev 2020:7453406. https://doi.org/10.1155/2020/7453406

    Article  CAS  Google Scholar 

  11. Ma W, Liu M, Liang F, Zhao L, Gao C, Jiang X, Zhang X, Zhan H, Hu H, Zhao Z (2020) Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin Pharmacol Toxicol 126:166–180. https://doi.org/10.1111/bcpt.13318

    Article  CAS  Google Scholar 

  12. Zhang H, Wei M, Sun Q, Yang T, Lu X, Feng X, Song M, Cui L, Fan H (2020) Lycopene ameliorates chronic stress-induced hippocampal injury and subsequent learning and memory dysfunction through inhibiting ROS/JNK signaling pathway in rats. Food Chem Toxicol 145:111688. https://doi.org/10.1016/j.fct.2020.111688

    Article  CAS  Google Scholar 

  13. Dey DK, Chang SN, Vadlamudi Y, Park JG, Kang SC (2020) Synergistic therapy with tangeretin and 5-fluorouracil accelerates the ROS/JNK mediated apoptotic pathway in human colorectal cancer cell. Food Chem Toxicol 143:111529. https://doi.org/10.1016/j.fct.2020.111529

    Article  CAS  Google Scholar 

  14. Chen Y, Feng X, Hu X, Sha J, Li B, Zhang H, Fan H (2018) Dexmedetomidine Ameliorates Acute Stress-Induced Kidney Injury by Attenuating Oxidative Stress and Apoptosis through Inhibition of the ROS/JNK Signaling Pathway. Oxid Med Cell Longev 2018:4035310. https://doi.org/10.1155/2018/4035310

    Article  CAS  Google Scholar 

  15. El-Kott AF, Alshehri AS, Khalifa HS, Abd-Lateif AM, Alshehri MA, El-Maksoud MMA, Eid RA, Bin-Meferij MM (2020) Cadmium Chloride Induces Memory Deficits and Hippocampal Damage by Activating the JNK/p(66)Shc/NADPH Oxidase Axis. Int J Toxicol 39:477–490. https://doi.org/10.1177/1091581820930651

    Article  CAS  Google Scholar 

  16. Jing GC, Liu D, Liu YQ, Zhang MR (2020) Nao-Fu-Cong ameliorates diabetic cognitive dysfunction by inhibition of JNK/CHOP/Bcl2-mediated apoptosis in vivo and in vitro. Chin J Nat Med 18:704–713. https://doi.org/10.1016/S1875-5364(20)60009-7

    Article  CAS  Google Scholar 

  17. Khan MS, Khan A, Ahmad S, Ahmad R, Rehman IUR, Ikram M, Kim MO (2020) Inhibition of JNK Alleviates Chronic Hypoperfusion-Related Ischemia Induces Oxidative Stress and Brain Degeneration via Nrf2/HO-1 and NF-kappaB Signaling. Oxid Med Cell Longev 2020:5291852. https://doi.org/10.1155/2020/5291852

    Article  CAS  Google Scholar 

  18. Park GB, Choi Y, Kim YS, Lee HK, Kim D, Hur DY (2014) ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol 44:977–985. https://doi.org/10.3892/ijo.2014.2252

    Article  CAS  Google Scholar 

  19. Franklin RB, Costello LC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106:750–757. https://doi.org/10.1002/jcb.22049

    Article  CAS  Google Scholar 

  20. Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signal Inflammopharmacol 25:11–24. https://doi.org/10.1007/s10787-017-0309-4

    Article  CAS  Google Scholar 

  21. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68:19–31. https://doi.org/10.1007/s12576-017-0571-7

    Article  CAS  Google Scholar 

  22. Lei P, Ayton S, Bush AI (2021) The essential elements of Alzheimer’s disease. J Biol Chem 296:100105. https://doi.org/10.1074/jbc.REV120.008207

    Article  CAS  Google Scholar 

  23. Lin JQ, Tian H, Zhao XG, Lin S, Li DY, Liu YY, Xu C, Mei XF (2021) Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination in a spinal contusion injury model. CNS Neurosci Ther 27:413–425. https://doi.org/10.1111/cns.13460

    Article  CAS  Google Scholar 

  24. Nowak G, Szewczyk B, Pilc A (2005) Zinc and depression. An update Pharmacol Rep 57:713–718

    CAS  Google Scholar 

  25. Tuzcu M, Sahin N, Dogukan A, Aslan A, Gencoglu H, Ilhan N, Kucuk O, Sahin K (2010) Protective role of zinc picolinate on cisplatin-induced nephrotoxicity in rats. J Ren Nutr 20:398–407. https://doi.org/10.1053/j.jrn.2010.04.002

    Article  CAS  Google Scholar 

  26. Wang Y, Mei X, Yuan J, Lu W, Li B, Xu D (2015) Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats. Toxicol Appl Pharmacol 289:1–11. https://doi.org/10.1016/j.taap.2015.08.017

    Article  CAS  Google Scholar 

  27. Nabil A, Elshemy MM, Asem M, Abdel-Motaal M, Gomaa HF, Zahran F, Uto K, Ebara M (2020) Zinc Oxide Nanoparticle Synergizes Sorafenib Anticancer Efficacy with Minimizing Its Cytotoxicity. Oxid Med Cell Longev 2020:1362104. https://doi.org/10.1155/2020/1362104

    Article  CAS  Google Scholar 

  28. Duran JM, Makarewich CA, Trappanese D, Gross P, Husain S, Dunn J, Lal H, Sharp TE, Starosta T, Vagnozzi RJ, Berretta RM, Barbe M, Yu D, Gao E, Kubo H, Force T, Houser SR (2014) Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ Res 114:1700–1712. https://doi.org/10.1161/CIRCRESAHA.114.303200

    Article  CAS  Google Scholar 

  29. Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, Bortolon E, Ichetovkin M, Chen C, McNabola A, Wilkie D, Carter CA, Taylor IC, Lynch M, Wilhelm S (2007) Sorafenib (BAY 43–9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 59:561–574. https://doi.org/10.1007/s00280-006-0393-4

    Article  CAS  Google Scholar 

  30. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109. https://doi.org/10.1158/0008-5472.CAN-04-1443

    Article  CAS  Google Scholar 

  31. Singla N, Dhawan DK (2017) Zinc Improves Cognitive and Neuronal Dysfunction During Aluminium-Induced Neurodegeneration. Mol Neurobiol 54:406–422. https://doi.org/10.1007/s12035-015-9653-9

    Article  CAS  Google Scholar 

  32. Bloemer J, Pinky PD, Smith WD, Bhattacharya D, Chauhan A, Govindarajulu M, Hong H, Dhanasekaran M, Judd R, Amin RH, Reed MN, Suppiramaniam V (2019) Adiponectin Knockout Mice Display Cognitive and Synaptic Deficits. Front Endocrinol (Lausanne) 10:819. https://doi.org/10.3389/fendo.2019.00819

    Article  Google Scholar 

  33. Guzman-Ramos K, Moreno-Castilla P, Castro-Cruz M, McGaugh JL, Martinez-Coria H, LaFerla FM, Bermudez-Rattoni F (2012) Restoration of dopamine release deficits during object recognition memory acquisition attenuates cognitive impairment in a triple transgenic mice model of Alzheimer’s disease. Learn Mem 19:453–460. https://doi.org/10.1101/lm.026070.112

    Article  CAS  Google Scholar 

  34. Zhou CC, Wang XJ, Li ZC, Lu WJ, Zhang YT, Shen FM, Li DJ (2021) Lead Exposure in Developmental Ages Promotes Abeta Accumulation by Disturbing Abeta Transportation in Blood-Cerebrospinal Fluid Barrier/Blood-Brain Barriers and Impairing Abeta Clearance in the Liver. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02969-8

    Article  Google Scholar 

  35. Garten A, Grohmann T, Kluckova K, Lavery GG, Kiess W, Penke M (2019) Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1. Int J Mol Sci 20:4048. https://doi.org/10.3390/ijms20164048

    Article  CAS  Google Scholar 

  36. Brandi G, de Rosa F, Calza L, Girolamo SD, Tufoni M, Ricci CS, Cirignotta F, Caraceni P, Biasco G (2013) Can the tyrosine kinase inhibitors trigger metabolic encephalopathy in cirrhotic patients? Liver Int 33:488–493. https://doi.org/10.1111/liv.12102

    Article  Google Scholar 

  37. Du C, Shao X, Zhu R, Li Y, Zhao Q, Fu D, Gu H, Kong J, Luo L, Long H, Deng P, Wang H, Hu C, Zhao Y, Cen X (2015) NMR-Based Metabolic Profiling Reveals Neurochemical Alterations in the Brain of Rats Treated with Sorafenib. Neurotox Res 28:290–301. https://doi.org/10.1007/s12640-015-9539-7

    Article  CAS  Google Scholar 

  38. Echeverria V, Burgess S, Gamble-George J, Zeitlin R, Lin X, Cao C, Arendash GW (2009) Sorafenib inhibits nuclear factor kappa B, decreases inducible nitric oxide synthase and cyclooxygenase-2 expression, and restores working memory in APPswe mice. Neurosci 162:1220–1231. https://doi.org/10.1016/j.neuroscience.2009.05.019

    Article  CAS  Google Scholar 

  39. Kim J, Park JH, Park SK, Hoe HS (2021) Sorafenib Modulates the LPS- and Abeta-Induced Neuroinflammatory Response in Cells, Wild-Type Mice, and 5xFAD Mice. Front Immunol 12:684344. https://doi.org/10.3389/fimmu.2021.684344

    Article  CAS  Google Scholar 

  40. Coriat R, Nicco C, Chereau C, Mir O, Alexandre J, Ropert S, Weill B, Chaussade S, Goldwasser F, Batteux F (2012) Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther 11:2284–2293. https://doi.org/10.1158/1535-7163.MCT-12-0093

    Article  CAS  Google Scholar 

  41. Abdelgalil AA, Mohamed OY, Ahamad SR, Al-Jenoobi FI (2020) The protective effect of losartan against sorafenib induced cardiotoxicity: Ex-vivo isolated heart and metabolites profiling studies in rat. Eur J Pharmacol 882:173229. https://doi.org/10.1016/j.ejphar.2020.173229

    Article  CAS  Google Scholar 

  42. Li Y, Xia J, Shao F, Zhou Y, Yu J, Wu H, Du J, Ren X (2021) Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis. Biochem Biophys Res Commun 534:877–884. https://doi.org/10.1016/j.bbrc.2020.10.083

    Article  CAS  Google Scholar 

  43. Cao JW, Duan SY, Zhang HX, Chen Y, Guo M (2020) Zinc Deficiency Promoted Fibrosis via ROS and TIMP/MMPs in the Myocardium of Mice. Biol Trace Elem Res 196:145–152. https://doi.org/10.1007/s12011-019-01902-4

    Article  CAS  Google Scholar 

  44. Li D, Tian H, Li X, Mao L, Zhao X, Lin J, Lin S, Xu C, Liu Y, Guo Y, Mei X (2020) Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci 245:117351. https://doi.org/10.1016/j.lfs.2020.117351

    Article  CAS  Google Scholar 

  45. Sun P, Gu L, Luo J, Qin Y, Sun L, Jiang S (2019) ROS-mediated JNK pathway critically contributes to PFOS-triggered apoptosis in SH-SY5Y cells. Neurotoxicol Teratol 75:106821. https://doi.org/10.1016/j.ntt.2019.106821

    Article  CAS  Google Scholar 

  46. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  47. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776. https://doi.org/10.1038/35037710

    Article  CAS  Google Scholar 

  48. Shi Z, Zhang K, Zhou H, Jiang L, Xie B, Wang R, Xia W, Yin Y, Gao Z, Cui D, Zhang R, Xu S (2020) Increased miR-34c mediates synaptic deficits by targeting synaptotagmin 1 through ROS-JNK-p53 pathway in Alzheimer’s Disease. Aging Cell 19:e13125. https://doi.org/10.1111/acel.13125

    Article  CAS  Google Scholar 

  49. Yang X, Yu K, Wang H, Zhang H, Bai C, Song M, Han Y, Shao B, Li Y, Li X (2018) Bone impairment caused by AlCl3 is associated with activation of the JNK apoptotic pathway mediated by oxidative stress. Food Chem Toxicol 116:307–314. https://doi.org/10.1016/j.fct.2018.04.057

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (81971306, 82003638), Shanghai Talent Development Fund (2020091), Shanghai “Rising Stars of Medical Talent” Youth Development Program-Youth Medical Talents-Clinical Pharmacist Program [SHWRS(2020)_087], Tongji University-Fundamental Research Funds for the Central Universities (22120210560), Shanghai Sailing Program (NO. 20YF1437600), and PangDeng Program of Shanghai Tenth People’s Hospital (2021SYPDRC037).

Author information

Authors and Affiliations

Authors

Contributions

Dong-Jie Li contributed to the supervision, methodology and original draft and wrote the paper. Fu-Ming Shen was involved in the supervision, designed and wrote the paper. Chen-Xu Ni improved original draft. Yu-Shuang Qiu contributed to the formal analysis and wrote the paper. Yu-Qiong He performed the experiments and data curation. Can-Can Zhou performed the experiments and data curation and wrote the paper. All authors have read and approved the final version of the submitted manuscript.

Corresponding authors

Correspondence to Fu-Ming Shen or Dong-Jie Li.

Ethics declarations

Ethics Statement

The animal study was reviewed and approved by the Ethics Committee for Animals of the Tongji University.

Consent for publication

All authors have read the manuscript and approved the final version of the submitted manuscript and claim that none of the material in the paper has been published or is under consideration for publication elsewhere.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 89.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, CC., He, YQ., Qiu, YS. et al. Zinc supplementation ameliorates sorafenib-induced cognitive impairment through ROS/JNK signaling pathway. Biol Trace Elem Res 201, 324–337 (2023). https://doi.org/10.1007/s12011-022-03142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03142-5

Keywords

Navigation