Skip to main content

Advertisement

Log in

Birth Size Outcomes in Relation to Maternal Blood Levels of Some Essential and Toxic Elements

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposures to toxic trace elements and deficiencies of essential trace elements during pregnancy may impact fetal growth. This study was conducted to determine the association between maternal blood levels of essential elements including manganese (Mn), copper (Cu), and zinc (Zn) and toxic elements including arsenic (As), cadmium (Cd), and lead (Pb) at the first trimester with neonatal anthropometric parameters. This cross-sectional study was conducted in 2019–2020 in Isfahan, Iran. Overall, 263 mother-infant pairs were recruited in the first trimester of pregnancy. Maternal whole blood was collected, and essential and toxic elements were determined by mass spectrometry (ICP-MS)–based method. Birth size measurements were performed according to standardized protocols. Geometric means and standard deviations of maternal blood concentrations of Mn, Cu, Zn, As, Cd, and Pb were 3.94 ± 0.82, 5.22 ± 0.57, 7.67 ± 0.58, 2.21 ± 0.77, − 0.59 ± 0.98, and 3.23 ± 0.72 µg/l, respectively. Mean age of mothers was 29.94 ± 5.22 years. Thirty-one (12.1%) neonates were preterm. Maternal blood Pb levels were negatively correlated with birth weight (β = − 0.22 (CI 95%: − 0.38, − 0.05) p = 0.010) and marginally with birth head circumference (β = − 0.14(CI 95%: − 0.29, 0.02), P = 0.094) after adjustment for potential confounder variables. There was no significant association between Mn, Cu, Zn, As, Cd, and birth size measurements. Reverse association was found between maternal blood Pb levels and birth weight and birth head circumference. There is limited evidence related to the association between essential and toxic elements during pregnancy with birth size measurements and pregnancy disorders. More studies are suggested to assess of the effect of the trace elements and birth outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Availability of Data and Materials

The obtained data would be disclosed upon reasonable requests.

References

  1. Zemrani B, Bines JE (2020) Recent insights into trace element deficiencies: causes, recognition and correction. Curr Opin Gastroenterol 36:110–117. https://doi.org/10.1097/mog.0000000000000612

    Article  Google Scholar 

  2. Jagodic M, Snoj Tratnik J, Mazej D et al (2017) Birth weight in relation to maternal blood levels of selected elements in slovenian populations: a cross-sectional study. J Health Sci 5:95–106

    Google Scholar 

  3. Iqbal S, Ali I, Rust P et al. Selenium, zinc, and manganese status in pregnant women and its relation to maternal and child complications. Nutrients 2020; 12. https://doi.org/10.3390/nu12030725

  4. Lewicka I, Kocyłowski R, Grzesiak M et al (2017) Selected trace elements concentrations in pregnancy and their possible role — literature review. Ginekologia Polska 88:509–514. https://doi.org/10.5603/GP.a2017.0093

    Article  Google Scholar 

  5. Yamamoto M, Sakurai K, Eguchi A et al (2019) Association between blood manganese level during pregnancy and birth size: the Japan environment and children’s study (JECS). Environ Res 172:117–126. https://doi.org/10.1016/j.envres.2019.02.007

    Article  CAS  Google Scholar 

  6. Atazadegan MA, Heidari-Beni M, Riahi R et al. (2021) Association of selenium, zinc and copper concentrations during pregnancy with birth weight: a systematic review and meta-analysis. J Trace Elem Med Biol. 126903.

  7. Guerrero-Romero F, Bermudez-Peña C, Rodríguez-Morán M (2011) Severe hypomagnesemia and low-grade inflammation in metabolic syndrome. Magnes Res 24:45–53

    Article  CAS  Google Scholar 

  8. Yang X, Li Y, Li J et al (2020) Associations between exposure to metal mixtures and birth weight. Environ Pollut 263:114537

    Article  CAS  Google Scholar 

  9. Boskabadi H, Maamouri G, Akhondian J et al (2021) Comparison of birth weights of neonates of mothers receiving vs. not receiving zinc supplement at pregnancy. BMC Pregnancy and Childbirth 21:1–7

    Article  Google Scholar 

  10. Dai Y, Zhang J, Qi X et al (2021) Cord blood manganese concentrations in relation to birth outcomes and childhood physical growth: a prospective birth cohort study. Nutrients 13:4304

    Article  CAS  Google Scholar 

  11. Yücel Çelik Ö, Akdas S, Yucel A et al. (2020) Maternal and placental zinc and copper status in intra-uterine growth restriction. Fetal Pediatr Pathol; 1-10.

  12. Alemu B, Gashu D (2020) Association of maternal anthropometry, hemoglobin and serum zinc concentration during pregnancy with birth weight. Early Hum Dev 142:104949

    Article  CAS  Google Scholar 

  13. Mistry HD, Kurlak LO, Young SD et al (2014) Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern Child Nutr 10:327–334

    Article  Google Scholar 

  14. Mora AM, de Joode BvW, Mergler D et al (2015) Maternal blood and hair manganese concentrations, fetal growth, and length of gestation in the ISA cohort in Costa Rica. Environ Res 136:47–56

    Article  CAS  Google Scholar 

  15. Tebbani F, Oulamara H, Agli A (2017) Maternal nutrition and birth weight: role of vitamins and trace elements. JFIV Reprod Med Genet 5:199

    Google Scholar 

  16. Bermudez L, Garcia-Vicent C, Lopez J et al (2015) Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight. J Transl Med 13:291. https://doi.org/10.1186/s12967-015-0654-2

    Article  CAS  Google Scholar 

  17. Clark NA, Teschke K, Rideout K et al (2007) Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements. Chemosphere 70:155–164

    Article  CAS  Google Scholar 

  18. Rembert N, He K, Judd SE et al (2017) The geographic distribution of trace elements in the environment: the REGARDS study. Environ Monit Assess 189:84

    Article  Google Scholar 

  19. Sabra S, Malmqvist E, Saborit A et al (2017) Heavy metals exposure levels and their correlation with different clinical forms of fetal growth restriction. PloS one 12:e0185645

    Article  Google Scholar 

  20. Arinola GO, Dutta A, Oluwole O et al (2018) Household air pollution, levels of micronutrients and heavy metals in cord and maternal blood, and pregnancy outcomes. Int J Environ Res Public Health 15:2891

    Article  CAS  Google Scholar 

  21. Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess 191:419. https://doi.org/10.1007/s10661-019-7528-7

    Article  CAS  Google Scholar 

  22. Yadav G, Chambial S, Agrawal N et al (2020) Blood lead levels in antenatal women and its association with iron deficiency anemia and adverse pregnancy outcomes. J Family Med Prim Care 9:3106–3111. https://doi.org/10.4103/jfmpc.jfmpc_78_20

    Article  Google Scholar 

  23. Poropat AE, Laidlaw MA, Lanphear B et al (2018) Blood lead and preeclampsia: a meta-analysis and review of implications. Environ Res 160:12–19

    Article  CAS  Google Scholar 

  24. Barn P, Gombojav E, Ochir C et al (2019) Coal smoke, gestational cadmium exposure, and fetal growth. Environ Research 179:108830. https://doi.org/10.1016/j.envres.2019.108830

    Article  CAS  Google Scholar 

  25. Akdas S, Yazihan N (2020) Cord blood zinc status effects on pregnancy outcomes and its relation with maternal serum zinc levels: a systematic review and meta-analysis. World J Pediatr 16:366–376

    Article  CAS  Google Scholar 

  26. Amegah AK, Sewor C, Jaakkola JJ (2021) Cadmium exposure and risk of adverse pregnancy and birth outcomes: a systematic review and dose–response meta-analysis of cohort and cohort-based case–control studies. J Expo Sci Environ Epidemiol 31:299–317

    Article  CAS  Google Scholar 

  27. Mikelson CK, Troisi J, LaLonde A et al (2019) Placental concentrations of essential, toxic, and understudied metals and relationships with birth outcomes in Chattanooga, TN. Environ Res 168:118–129

    Article  CAS  Google Scholar 

  28. Carducci B, Keats EC, Bhutta ZA (2021) Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database of Systematic Reviews

  29. Liang CM, Wu XY, Huang K et al (2019) Trace element profiles in pregnant women’s sera and umbilical cord sera and influencing factors: repeated measurements. Chemosphere 218:869–878. https://doi.org/10.1016/j.chemosphere.2018.11.115

    Article  CAS  Google Scholar 

  30. Eguchi A, Yanase K, Yamamoto M et al (2019) The relationship of maternal PCB, toxic, and essential trace element exposure levels with birth weight and head circumference in Chiba, Japan. Environ Sci Pollut Res 26:15677–15684

    Article  CAS  Google Scholar 

  31. Sakhvidi MJZ, Danaei N, Dadvand P et al. (2021) The Prospective Epidemiological Research Studies in IrAN (PERSIAN) Birth Cohort protocol: rationale, design and methodology. Longitud Life Course Stud; 241-262.

  32. Ammann AA (2007) Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J Mass Spectrom 42:419–427

    Article  CAS  Google Scholar 

  33. De Onis M, Habicht J-P (1996) Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr 64:650–658. https://doi.org/10.1093/ajcn/64.4.650

    Article  Google Scholar 

  34. Alexander G, Himes J, Kaufman R et al (1996) A United States national reference for fetal growth Obstet Gynecol 87: 163–168. Obstet Gynecol 87:163–168. https://doi.org/10.1016/0029-7844(95)00386-X

    Article  CAS  Google Scholar 

  35. Gundacker C, Fröhlich S, Graf-Rohrmeister K et al (2010) Perinatal lead and mercury exposure in Austria. Science of The Total Environment Sci Total Environ 408:5744–5749. https://doi.org/10.1016/j.scitotenv.2010.07.079

    Article  CAS  Google Scholar 

  36. Chelchowska M, Ambroszkiewicz J, Jablonka-Salach K et al (2013) Tobacco smoke exposure during pregnancy increases maternal blood lead levels affecting neonate birth weight. Biol Trace Elem Res 155:169–175. https://doi.org/10.1007/s12011-013-9775-8

    Article  CAS  Google Scholar 

  37. Jelliffe-Pawlowski LL, Miles SQ, Courtney JG et al (2006) Effect of magnitude and timing of maternal pregnancy blood lead (Pb) levels on birth outcomes. J Perinatol 26:154–162. https://doi.org/10.1038/sj.jp.7211453

    Article  CAS  Google Scholar 

  38. Zhu M, Fitzgerald EF, Gelberg KH et al (2010) Maternal low-level lead exposure and fetal growth. Environ Health Perspect 118:1471–1475

    Article  CAS  Google Scholar 

  39. Gharehzadehshirazi A, Kadivar M, Shariat M et al (2021) Comparative analyses of umbilical cord lead concentration in term and IUGR complicated neonates. J Matern-Fetal Neonatal Med 34:867–872. https://doi.org/10.1080/14767058.2019.1620726

    Article  CAS  Google Scholar 

  40. Renzetti S, Just AC, Burris HH et al (2017) The association of lead exposure during pregnancy and childhood anthropometry in the Mexican PROGRESS cohort. Environ Res 152:226–232. https://doi.org/10.1016/j.envres.2016.10.014

    Article  CAS  Google Scholar 

  41. Esteban-Vasallo MD, Aragonés N, Pollan M et al (2012) Mercury, cadmium, and lead levels in human placenta: a systematic review. Environ Health Perspect 120:1369–1377. https://doi.org/10.1289/ehp.1204952

    Article  CAS  Google Scholar 

  42. Dalili H, Shariat M, Kavyani Z et al (2019) Correlation between lead in maternal blood, umbilical cord blood, and breast milk with newborn anthro-pometric characteristics. Iranian Journal of Neonatology IJN 10:6–11. https://doi.org/10.22038/ijn.2019.38763.1610

    Article  CAS  Google Scholar 

  43. Kirel B, Aksit M, Bulut H. Blood lead levels of maternal-cord pairs, children and adults who live in a central urban area in Turkey. Turk J Pediatr The Turkish journal of pediatrics 2005; 47: 125-131.

  44. Jameil NA (2014) Maternal serum lead levels and risk of preeclampsia in pregnant women: a cohort study in a maternity hospital, Riyadh, Saudi Arabia. Int J Clin Exp Pathol 7:3182–3189

    Google Scholar 

  45. Lee MS, Eum KD, Golam M et al (2021) Umbilical cord blood metal mixtures and birth size in bangladeshi children. Environtal Health Perspective 129:57006. https://doi.org/10.1289/EHP7502

    Article  CAS  Google Scholar 

  46. Wai KM, Mar O, Kosaka S et al (2017) Prenatal heavy metal exposure and adverse birth outcomes in Myanmar: a birth-cohort study. Int J Environ Res Public Health 14:1339

    Article  Google Scholar 

  47. Zhou C, Zhang R, Cai X et al (2019) Trace elements profiles of maternal blood, umbilical cord blood, and placenta in Beijing, China. J Matern-Fetal Neonatal Med 32:1755–1761. https://doi.org/10.1080/14767058.2017.1416602

    Article  CAS  Google Scholar 

  48. Söderholm M, Borné Y, Hedblad B et al (2020) Blood cadmium concentration and risk of subarachnoid haemorrhage. Environ Res 180:108826. https://doi.org/10.1016/j.envres.2019.108826

    Article  CAS  Google Scholar 

  49. Singh N, Ogunseitan OA, Tang Y (2021) Systematic review of pregnancy and neonatal health outcomes associated with exposure to e-waste disposal. Crit Rev Environ Sci Technol 51:2424–2448

    Article  CAS  Google Scholar 

  50. TZhang Y-L, Zhao Y-C, Wang J-X et al. Effect of environmental exposure to cadmium on pregnancy outcome and fetal growth: a study on healthy pregnant women in China. Journal of Environmental Science and Health, Part A J Environ Sci Health 2004; 39: 2507-2515. DOI: https://doi.org/10.1081/ESE-200026331

  51. Röllin HB, Channa K, Olutola BG et al (2017) Evaluation of in utero exposure to arsenic in South Africa. Science of The Total Environment 575:338–346. https://doi.org/10.1016/j.scitotenv.2016.10.044

    Article  CAS  Google Scholar 

  52. Hopenhayn C, Ferreccio C, Browning SR et al (2003) Arsenic exposure from drinking water and birth weight. Epidemiology 14:593–602

    Article  Google Scholar 

  53. Guan H, Wang M, Li X et al (2013) Manganese concentrations in maternal and umbilical cord blood: related to birth size and environmental factors. Eur J Public Health 24:150–157. https://doi.org/10.1093/eurpub/ckt033

    Article  Google Scholar 

  54. Yang C-Y, Chang C-C, Tsai S-S et al (2003) Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ Res 91:29–34. https://doi.org/10.1016/S0013-9351(02)00015-4

    Article  Google Scholar 

  55. Rahman A, Vahter M, Smith AH et al (2009) Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol 169:304–312

    Article  Google Scholar 

  56. Rahbar MH, Samms-Vaughan M, Dickerson AS et al (2015) Concentration of lead, mercury, cadmium, aluminum, arsenic and manganese in umbilical cord blood of Jamaican newborns. Int J Environ Res Public Health 12:4481–4501. https://doi.org/10.3390/ijerph120504481

    Article  CAS  Google Scholar 

  57. Vigeh M, Yokoyama K, Ramezanzadeh F et al (2008) Blood manganese concentrations and intrauterine growth restriction. Reprod Toxicol 25:219–223. https://doi.org/10.1016/j.reprotox.2007.11.011

    Article  CAS  Google Scholar 

  58. Ashley-Martin J, Dodds L, Arbuckle TE et al (2018) Maternal and cord blood manganese (Mn) levels and birth weight: The MIREC birth cohort study. Int J Hyg Environ Health 221:876–882. https://doi.org/10.1016/j.ijheh.2018.05.015

    Article  CAS  Google Scholar 

  59. Zota AR, Ettinger AS, Bouchard M et al (2009) Maternal blood manganese levels and infant birth weight. Epidemiology (Cambridge, Mass) 20:367–373. https://doi.org/10.1097/EDE.0b013e31819b93c0

    Article  Google Scholar 

  60. Eum J-H, Cheong H-K, Ha E-H et al (2014) Maternal blood manganese level and birth weight: a MOCEH birth cohort study. Environ Health 13:1–7. https://doi.org/10.1186/1476-069X-13-31

    Article  CAS  Google Scholar 

  61. Oulhote Y, Mergler D, Bouchard MF (2014) Sex-and age-differences in blood manganese levels in the US general population: national health and nutrition examination survey 2011–2012. Environ Health 13:1–10. https://doi.org/10.1186/1476-069X-13-87

    Article  CAS  Google Scholar 

  62. Ugwuja EI, Akubugwo EI, Ibiam UA et al (2010) Impact of maternal copper and zinc status on pregnancy outcomes in a population of pregnant Nigerians. Pak J Nutr 9:678–682

    Article  CAS  Google Scholar 

  63. Daniali SS, Shayegh S, Tajaddin MH et al (2020) Association of cord blood zinc level and birth weight in a sample of Iranian neonates. Int J Prev Med 11:3–3. https://doi.org/10.4103/ijpvm.IJPVM_160_19

    Article  Google Scholar 

  64. Jyotsna S, Amit A, Kumar A. Study of serum zinc in low birth weight neonates and its relation with maternal zinc. J Clin Diagn Res 2015; 9: Sc01-03. https://doi.org/10.7860/jcdr/2015/10449.5402

  65. Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D (2020) The role of Fe, Zn, and Cu in pregnancy. Biomolecules 10:1176

    Article  CAS  Google Scholar 

  66. Wang H, Hu Y-F, Hao J-H et al (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep 5:11262. https://doi.org/10.1038/srep11262

    Article  Google Scholar 

  67. Ofakunrin A, Collins J, Diala U et al (2017) Relationship between maternal serum zinc, cord blood zinc and birth weight of term newborn infants in Jos, Plateau State, Nigeria. Jos J Medicine 11:12–20

    Google Scholar 

  68. Lewandowska M, Więckowska B, Sajdak S et al (2020) First trimester microelements and their relationships with pregnancy outcomes and complications. Nutrients 12:1108

    Article  CAS  Google Scholar 

  69. Gebreselassie SG, Gashe FE (2011) A systematic review of effect of prenatal zinc supplementation on birthweight: meta-analysis of 17 randomized controlled trials. J Health Popul Nutr 29:134

    Google Scholar 

  70. Hess SY, King JC (2009) Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food Nutr Bull 30:S60-78. https://doi.org/10.1177/15648265090301s105

    Article  Google Scholar 

  71. Nicholson JF, MA. P. Reference ranges for laboratory tests and procedures. In: Behrman RE, Kliegman RM, Jenson HB; Nelson Text-Book of Pediatrics. Philadelphia: WB Saunders Company;; 2000.

  72. Zadrożna M, Gawlik M, Nowak B et al (2009) Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas. J Trace Elem Med Biol 23:144–148. https://doi.org/10.1016/j.jtemb.2009.02.005

    Article  CAS  Google Scholar 

  73. Abass RM, Hamdan HZ, Elhassan EM et al (2014) Zinc and copper levels in low birth weight deliveries in Medani Hospital, Sudan. BMC Research Notes 7:386. https://doi.org/10.1186/1756-0500-7-386

    Article  CAS  Google Scholar 

  74. Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D. The role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020; 10. DOI: https://doi.org/10.3390/biom10081176

  75. Ugwuja EI, Akubugwo EI, Ibiam UA et al (2011) Maternal sociodemographic parameters: impact on trace element status and pregnancy outcomes in Nigerian women. J Health Popul Nutr 29:156–162. https://doi.org/10.3329/jhpn.v29i2.7858

    Article  Google Scholar 

  76. Zhou H, Lu Y, Pan B et al (2021) Iodine deficiency as assessed by neonatal TSH in a sample of mother-and-newborn pairs in Jiangsu Province, China. Biol Trace Elem Res 199:70–75. https://doi.org/10.1007/s12011-020-02135-6

    Article  CAS  Google Scholar 

Download references

Funding

This study was conducted as the project number 298200 and supported by Isfahan University of Medical Sciences (Research Ethics code: IR.MUI.MED.REC.1398.599). The main cohort was funded by the Ministry of Health and Medical Education, as the project number 194354 (Research Ethics code: IR.MUI.REC.1394.1.354).

Author information

Authors and Affiliations

Authors

Contributions

RK and SSD conceptualized and designed the study. ET, EZ, and PG participated in the data collection. MY performed the statistical analysis. SSD and MHB drafted the manuscript. MHB and RK critically reviewed the manuscript. All the authors agreed on the final version of the manuscript.

Corresponding authors

Correspondence to Motahar Heidari-Beni or Roya Kelishadi.

Ethics declarations

Ethics Approval and Consent to Participate

The protocol of the present study was approved by the Ethics Committee of the Isfahan University of Medical Sciences. All of the participants were informed about the purposes and protocols of the study and follow-up stages. Furthermore, written informed consent was obtained from the participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniali, S.S., Yazdi, M., Heidari-Beni, M. et al. Birth Size Outcomes in Relation to Maternal Blood Levels of Some Essential and Toxic Elements. Biol Trace Elem Res 201, 4–13 (2023). https://doi.org/10.1007/s12011-022-03121-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03121-w

Keywords

Navigation