Skip to main content
Log in

Differentiating Wild and Apiary Honey by Elemental Profiling: a Case Study from Mangroves of Indian Sundarban

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Honey is a natural substance produced by honeybees from the nectar or secretion of flowering plants. Along with the botanical and geographical origin, several environmental factors also play a major role in determining the characteristics of honey. The aim of this study is to determine and compare the elemental concentration of various macro and trace elements in apiary and wild honeys collected from different parts of Indian Sundarbans. The elemental analysis was performed in inductively coupled plasma optical emission spectroscopy preceded by microwave digestion method. The concentrations of 19 elements (Ag, Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Se and Zn) were investigated from thirteen locations of Indian Sundarbans. This comparative study shows in wild honey samples, the concentration of K was highest followed by Ca, Mg and Na and Zn was lowest among all. In contrast, in apiary honey samples, Ca had maximum concentration followed by K, Mg and Na and Ag had minimum among all. The elemental concentration in honey from apiary was either equal or higher than their wild counterpart. The results of the factor analysis of PCA algorithm for wild and apiary honey samples were highly variable which implies that the elements are not coming from the same origin. The concentration of element was found to be highly variable across sites and across sources of honey samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The dataset that are analysed during the study are available from the authors and corresponding author on reasonable requisition.

Code Availability

The data and other details were derived from the following study available in the public domain.

References

  1. Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Am Coll Nutr 27(6):677–689. https://doi.org/10.1080/07315724.2008.10719745

    Article  CAS  PubMed  Google Scholar 

  2. Ajibola A, Chamunorwa JP, Erlwanger KH (2012) Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr. Metab. 9 (1):61. http://www.nutritionandmetabolism.com/content/9/1/61. Accessed 15 Feb 2021

  3. Kadri SM, Zaluski R, de Oliveira OR (2017) Nutritional and mineral contents of honey extracted by centrifugation and pressed processes. Food Chem 218:237–241. https://doi.org/10.1016/j.foodchem.2016.09.071

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed S, Othman NH (2013) Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malays J Med Sci 20 (3):6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743976/#. Accessed 15 Feb 2021

  5. Abeshu MA, Geleta B (2016) Medicinal uses of honey. Biol Med 8(2):1. https://doi.org/10.4172/0974-8369.1000279

    Article  CAS  Google Scholar 

  6. La-Serna Ramos IE, Pérez BM, Ferreras CG (1999) Pollen characterization of multifloral honeys from La Palma (Canary Islands). Grana 38(6):356–363. https://doi.org/10.1080/00173130050136145

    Article  Google Scholar 

  7. La-Serna Ramos IE, GÓmez Ferreras C (2006) Pollen and sensorial characterization of different honeys from El Hierro (Canary Islands). Grana 45(2):146–159. https://doi.org/10.1080/00173130600578658

    Article  Google Scholar 

  8. La Serna Ramos IE, Gómez Ferreras C (2011) An example of the role of exotic flora in the geographical characterisation of honey: Schinus molle L. in the Canary Islands (Spain). Grana 50(2):136–149. https://doi.org/10.1080/00173134.2011.578656

    Article  Google Scholar 

  9. Oddo LP, Piana L, Bogdanov S, Bentabol A, Gotsiou P, Kerkvliet J, Martin P, Morlot M, Valbuena AO, Ruoff K (2004) Botanical species giving unifloral honey in Europe. Apidologie (Celle) 35(Suppl 1):S82–S93. https://doi.org/10.1051/apido:2004045

    Article  Google Scholar 

  10. Ejigu K, Gebey T, Preston TR (2009) Constraints and prospects for apiculture research and development in Amhara region, Ethiopia. Livest Res Rural Dev 21 (10):172. http://www.lrrd.org/lrrd21/10/ejig21172.htm. Accessed 25 Dec 2020

  11. Agrawal TJ (2014) Beekeeping industry in India: future potential. Int J Res Appl Nat Soc Sci 2(7):133–140

    Google Scholar 

  12. Thakur R, Manzoor U, Bhadauriya AS (2019) Apiculture for Sustainable Rural Development. RASSA J Sci Soc 1(1and2):46–48

    Google Scholar 

  13. Gani MO (2001) The giant honey bee (Apis dorsata) and honey hunting in Sundarbans reserved forests of Bangladesh. In: Proceedings of the 37th International Apicultural Congress

  14. Samanta A, Chakraborti K, Bandopadhyay M, Sengupta R (2013) Moule, honey collectors of Sundarbans and their ITKs. Am J Adv Med Sci 1(2):1–6

    Google Scholar 

  15. Singh A, Bhattacharya P, Vyas P, Roy S (2010) Contribution of NTFPs in the livelihood of mangrove forest dwellers of Sundarban. Int J Hum Ecol 29(3):191–200. https://doi.org/10.1080/09709274.2010.11906263

    Article  Google Scholar 

  16. Zohora FT (2011) Non-timber forest products and livelihoods in the Sundarbans. Rural Livelihoods and Protected Landscapes: Co-management in the Wetlands and Forests of Bangladesh Nishorgo Network, Dhaka: 99–117

  17. Agoramoorthy G, Chen FA, Hsu MJ (2008) Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu. India Environ Pollut 155(2):320–326. https://doi.org/10.1016/j.envpol.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365. https://doi.org/10.1016/j.envpol.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  19. Tomlinson P (1986) The botany of mangroves. London. https://doi.org/10.1017/S0025315400026527

  20. Naskar K, Guha Bakshi DN (1987) Mangrove swamps of the Sundarbans. Naya Prokash, Kolkata

  21. Banerjee LK, Sastry ARK, Nayar M (1989) Mangroves in India: identification manual. Botanical Survey of India, Kolkata

  22. Zmarlicki C (1994) Integrated resources development of the Sundarbans Reserved Forest, Bangladesh. United Nations Development Organization and Food and Agriculture Organization of the United Nations Rome, Italy

  23. Hermosı́n I, Chicón RM, Cabezudo MD (2003) Free amino acid composition and botanical origin of honey. Food Chem 83(2):263–268. https://doi.org/10.1016/S0308-8146(03)00089-X

    Article  CAS  Google Scholar 

  24. Wang J, Li QX (2011) Chemical composition, characterization, and differentiation of honey botanical and geographical origins. Adv Food Nutr Res 62:89–137. https://doi.org/10.1016/B978-0-12-385989-1.00003-X

    Article  CAS  PubMed  Google Scholar 

  25. Tonelli D, Gattavecchia E, Ghini S, Porrini C, Celli G, Mercuri A (1990) Honey bees and their products as indicators of environmental radioactive pollution. J Radioanal Nucl Chem 141(2):427–436. https://doi.org/10.1007/bf02035809

    Article  CAS  Google Scholar 

  26. Fodor P, Molnar E (1993) Honey as an environmental indicator: effect of sample preparation on trace element determination by ICP-AES. Microchim Acta 112(1–4):113–118. https://doi.org/10.1007/BF01243327

    Article  CAS  Google Scholar 

  27. Porrini C, Sabatini AG, Girotti S, Fini F, Monaco L, Celli G, Bortolotti L, Ghini S (2003) The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. Bull Insectology 56(1):147–152

    Google Scholar 

  28. Balayiannis G, Balayiannis P (2008) Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece. Arch Environ Contam Toxicol 55(3):462–470. https://doi.org/10.1007/s00244-007-9126-x

    Article  CAS  PubMed  Google Scholar 

  29. Bargańska Ż, Ślebioda M, Namieśnik J (2016) Honey bees and their products: bioindicators of environmental contamination. Crit Rev Environ Sci Technol 46(3):235–248. https://doi.org/10.1080/10643389.2015.1078220

    Article  Google Scholar 

  30. Voica C, Iordache AM, Ionete RE (2020) Multielemental characterization of honey using inductively coupled plasma mass spectrometry fused with chemometrics. J Mass Spectrom 55(7):e4512. https://doi.org/10.1002/jms.4512

    Article  CAS  PubMed  Google Scholar 

  31. Magdas DA, Guyon F, Puscas R, Vigouroux A, Gaillard L, Dehelean A, Feher I, Cristea G (2021) Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chem 334:127599. https://doi.org/10.1016/j.foodchem.2020.127599

    Article  CAS  PubMed  Google Scholar 

  32. Hungerford NL, Fletcher MT, Tsai HH, Hnatko D, Swann LJ, Kelly CL, Anuj SR, Tinggi U, Webber DC, Were ST, Tan BL (2021) Occurrence of environmental contaminants (pesticides, herbicides, PAHs) in Australian/Queensland Apis mellifera honey. Food Addit Contam 5:1–3. https://doi.org/10.1080/19393210.2021.1914743

    Article  CAS  Google Scholar 

  33. Grainger MN, Klaus H, Hewitt N, French AD (2021) Investigation of inorganic elemental content of honey from regions of North Island New Zealand. Food Chem 361:130110. https://doi.org/10.1016/j.foodchem.2021.130110

    Article  CAS  PubMed  Google Scholar 

  34. da Rosa FP, Soares LB, Resmim CM, Boff MG, de Moraes LP, Moreira FT, Brum CF, dos Santos CO, Tusi MM (2020) Quality parameters, mineral profile and correlation of origin and physical-chemical parameters of Apis mellifera honey produced in southern Brazil. Ciência e Natura 42:49. https://doi.org/10.5902/2179460X39761

    Article  Google Scholar 

  35. Rashmi I, Roy T, Kartika K, Pal R, Coumar V, Kala S, Shinoji K (2020) Organic and inorganic fertilizer contaminants in agriculture: impact on soil and water resources. In: Contaminants in Agriculture. Springer, pp 3–41. https://doi.org/10.1007/978-3-030-41552-5_1

  36. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, pp 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  37. Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean (Weinh) 43(4):479–489. https://doi.org/10.1002/clen.201300989

    Article  CAS  Google Scholar 

  38. Dhanakumar S, Solaraj G, Mohanraj R (2015) Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicol Environ Saf 113:145–151. https://doi.org/10.1016/j.ecoenv.2014.11.032

    Article  CAS  PubMed  Google Scholar 

  39. Sachithanandam V, Parthasarathy P, Elangovan SS, Kasilingam K, Dhivya P, Mageswaran T, Mohan P (2020) A baseline study on trace metals concentration and its ecological risk assessment from the coast of South Andaman Island, India. Reg Stud Mar Sci 36:101242. https://doi.org/10.1016/j.rsma.2020.101242

  40. Sarkar S, Bhattacharya B, Debnath S, Bandopadhaya G, Giri S (2002) Heavy metals in biota from Sundarban Wetland Ecosystem, India: Implications to monitoring and environmental assessment. Aquat Ecosyst Health Manag 5(4):467–472. https://doi.org/10.1080/14634980290031884

    Article  CAS  Google Scholar 

  41. Bhattacharya BD, Nayak DC, Sarkar SK, Biswas SN, Rakshit D, Ahmed MK (2015) Distribution of dissolved trace metals in coastal regions of Indian Sundarban mangrove wetland: a multivariate approach. J Clean Prod 96:233–243. https://doi.org/10.1016/j.jclepro.2014.04.030

    Article  CAS  Google Scholar 

  42. Ghosh S, Bakshi M, Kumar A, Ramanathan A, Biswas JK, Bhattacharyya S, Chaudhuri P, Shaheen SM, Rinklebe J (2019) Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly-Matla estuarine system. India Environ Geochem Health 41(1):53–70. https://doi.org/10.1007/s10653-018-0119-7

    Article  CAS  PubMed  Google Scholar 

  43. Potortì AG, Turco VL, Di Bella G (2021) Chemometric analysis of elements content in Algerian spices and aromatic herbs. LWT 138:110643. https://doi.org/10.1016/j.lwt.2020.110643

    Article  CAS  Google Scholar 

  44. Di Bella G, Potortì AG, Beltifa A, Ben Mansour H, Nava V, Lo Turco V (2021) Discrimination of Tunisian honey by mineral and trace element chemometrics profiling. Foods 10(4):724. https://doi.org/10.3390/foods10040724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ajtony Z, Bencs L, Haraszi R, Szigeti J, Szoboszlai N (2007) Study on the simultaneous determination of some essential and toxic trace elements in honey by multi-element graphite furnace atomic absorption spectrometry. Talanta 71(2):683–690. https://doi.org/10.1016/j.talanta.2006.05.023

    Article  CAS  PubMed  Google Scholar 

  46. Bilandžić N, Đokić M, Sedak M, Kolanović BS, Varenina I, Končurat A, Rudan N (2011) Determination of trace elements in Croatian floral honey originating from different regions. Food Chem 128(4):1160–1164. https://doi.org/10.1016/j.foodchem.2011.04.023

    Article  CAS  Google Scholar 

  47. Bilandžić N, Sedak M, Đokić M, Bošković AG, Florijančić T, Bošković I, Kovačić M, Puškadija Z, Hruškar M (2020) Assessment of toxic and trace elements in multifloral honeys from two regions of Continental Croatia. Bull Environ Contam Toxicol 104(1):84–89. https://doi.org/10.1007/s00128-019-02764-1

    Article  CAS  PubMed  Google Scholar 

  48. Squadrone S, Brizio P, Stella C, Mantia M, Pederiva S, Brusa F, Mogliotti P, Garrone A, Abete MC (2020) Trace elements and rare earth elements in honeys from the Balkans, Kazakhstan, Italy, South America, and Tanzania. Environ Sci Pollut Res 27:12646–12657. https://doi.org/10.1007/s11356-020-07792-7

    Article  CAS  Google Scholar 

  49. Sarker N, Chowdhury MAZ, Fakhruddin ANM, Fardous Z, Moniruzzaman M, Gan SH (2015) Heavy metal contents and physical parameters of Aegiceras corniculatum, Brassica juncea, and Litchi chinensis honeys from Bangladesh. Biomed Res Int. 2015:1–7. https://doi.org/10.1155/2015/720341

  50. Afroz R, Tanvir E, Paul S, Bhoumik NC, Gan SH, Khalil MI (2016) DNA damage inhibition properties of sundarban honey and its phenolic composition. J Food Biochem 40(4):436–445. https://doi.org/10.1111/jfbc.12240

    Article  CAS  Google Scholar 

  51. Paul S, Hossen M, Tanvir E, Afroz R, Hossen D, Das S, Bhoumik NC, Karim N, Juliana FM, Gan SH (2017) Minerals, toxic heavy metals, and antioxidant properties of honeys from Bangladesh. J Chem 2017. https://doi.org/10.1155/2017/6101793

  52. Chaudhuri A, Choudhury A (1994) Mangroves of the Sundarbans. Volume 1: India. Mangroves of the Sundarbans Volume 1: India.

  53. Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci 68(3):338–354. https://doi.org/10.1007/s00027-006-0868-8

    Article  Google Scholar 

  54. Danda A, Sriskanthan G, Ghosh A, Bandopadhyay J, Hazra S (2011) Indian Sundarbans Delta: a vision. World Wide Fund for Nature-India, New Delhi

    Google Scholar 

  55. Chaudhuri P, Ghosh S, Bakshi M, Bhattacharyya S, Nath B (2015) A review of threats and vulnerabilities to mangrove habitats: with special emphasis on east coast of India. J Earth Sci Clim Change 6 (4):1–9. https://doi.org/10.4172/2157-7617.1000270

  56. Bakshi M, Ghosh S, Chakraborty D, Hazra S, Chaudhuri P (2018) Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: a case study on Avicennia officinalis L. in and around Sundarban India. Mar Pollut Bull 133:157–172. https://doi.org/10.1016/j.marpolbul.2018.05.030

    Article  CAS  PubMed  Google Scholar 

  57. Chatterjee M, Massolo S, Sarkar SK, Bhattacharya AK, Bhattacharya BD, Satpathy KK, Saha S (2009) An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environ Monit Assess 150(1):307–322. https://doi.org/10.1007/s10661-008-0232-7

    Article  CAS  PubMed  Google Scholar 

  58. Nath A, Samanta S, Banerjee S, Danda AA, Hazra S (2021) Threat of arsenic contamination, salinity and water pollution in agricultural practices of Sundarban Delta, India, and mitigation strategies. Appl Sci 3(5):1–5. https://doi.org/10.1007/s42452-021-04544-1)

    Article  Google Scholar 

  59. Exley C (2016) The toxicity of aluminium in humans. Morphologie 100(329):51–55. https://doi.org/10.1016/j.morpho.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  60. Inan-Eroglu E, Ayaz A (2018) Is aluminum exposure a risk factor for neurological disorders? J Res Med Sci 23:1–8. https://doi.org/10.4103/jrms.JRMS_921_17

  61. Reyes AJ, Ramcharan K, Giddings SL, Ramesar A, Arias ER, Rampersad F (2021) Movement disorders and dementia in a woman with chronic aluminium toxicity: video-MRI imaging. TOHM 11:1–8. https://doi.org/10.5334/tohm.588

    Article  Google Scholar 

  62. Resmi S, Tripathi SK, Baraik S, Sengupta D (2019) Trace metals concentration in the river sediments of Western Sundarban Creeks and its environmental impact. Indian J Earth Sci 73(2):143–156. https://www.researchgate.net/publication/339642933. Accessed 04.05.2021

  63. Pickering RT, Bradlee ML, Singer MR, Moore LL (2021) Higher intakes of potassium and magnesium, but not lower sodium, reduce cardiovascular risk in the Framingham Offspring Study. Nutrients 13(1):269–280. https://doi.org/10.3390/nu13010269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I (2021) The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules 11(4):506–531. https://doi.org/10.3390/biom11040506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cormick G, Betran AP, Romero IB, Cormick MS, Belizán JM, Bardach A (2021) Ciapponi A (2021) Effect of calcium fortified foods on health outcomes: a systematic review and meta-analysis. Nutrients 13(2):316–347. https://doi.org/10.3390/nu13020316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sahinler N, Gnl A, Akyol E (2009) Heavy metals, trace elements and biochemical composition of different honey produce in Turkey. Asian J Chem 21(3):1887–1896

    CAS  Google Scholar 

  67. Filippini T, Malavolti M, Whelton PK, Naska A, Orsini N, Vinceti M (2021) Blood pressure effects of sodium reduction: dose–response meta-analysis of experimental studies. Circulation 143(16):1542–1567. https://doi.org/10.1161/CIRCULATIONAHA.120.050371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Le Roux G, Hansson SV, Claustres A (2016) Inorganic chemistry in the mountain critical zone: are the mountain water towers of contemporary society under threat by trace contaminants? In: Developments in Earth Surface Processes, vol 21. Elsevier, pp 131–154. https://doi.org/10.1016/B978-0-444-63787-1.00003-2

  69. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9(3):42–74. https://doi.org/10.3390/toxics9030042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang P, Yuan Y, Xu K, Zhong H, Yang Y, Jin S, Yang K, Qi X (2020) Biological applications of copper-containing materials. Bioact Mater 6(4):916–927. https://doi.org/10.1016/j.bioactmat.2020.09.017

  71. Dehbalaei MG, Ashtary-Larky D, Mesrkanlou HA, Talebi S, Asbaghi O (2021) The effects of magnesium and vitamin E co-supplementation on some cardiovascular risk factors: a meta-analysis. Clin Nutr ESPEN 41:110–117. https://doi.org/10.1016/j.clnesp.2020.10.021

    Article  PubMed  Google Scholar 

  72. Dominguez LJ, Veronese N, Barbagallo M (2021) Magnesium and hypertension in old age. Nutrients 13(1):139. https://doi.org/10.3390/nu13010139

    Article  CAS  Google Scholar 

  73. Dominguez LJ, Veronese N, Guerrero-Romero F, Barbagallo M (2021) Magnesium in infectious diseases in older people. Nutrients 13(1):180. https://doi.org/10.3390/nu13010180

    Article  CAS  PubMed Central  Google Scholar 

  74. Racette BA, Nelson G, Dlamini WW, Prathibha P, Turner JR, Ushe M, Checkoway H, Sheppard L, Nielsen SS (2021) Severity of parkinsonism associated with environmental manganese exposure. Environ Health 20(1):1–13. https://doi.org/10.1186/s12940-021-00712-3

    Article  CAS  Google Scholar 

  75. Kulshreshtha D, Ganguly J, Jog M (2021) Manganese and movement disorders: a review. J Mov Disord 14(2):93–102. https://doi.org/10.14802/jmd.20123

    Article  PubMed  PubMed Central  Google Scholar 

  76. Racette BA, Nelson G, Dlamini WW, Hershey T, Prathibha P, Turner JR, Checkoway H, Sheppard L, Nielsen SS (2021) Depression and anxiety in a manganese-exposed community. Neurotoxicology 85:222–233. https://doi.org/10.1016/j.neuro.2021.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fischer A, Brodziak-Dopierała BA, Mońka I, Loska K, Stojko J (2021) Dietary supplements as additional sources of zinc in the human organism. Farmacia 69(2):325–331. https://doi.org/10.31925/farmacia.2021.2.18

    Article  CAS  Google Scholar 

  78. Cuajungco MP, Ramirez MS, Tolmasky ME (2021) Zinc: multidimensional effects on living organisms. Biomedicines 9(2):208–232. https://doi.org/10.3390/biomedicines9020208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lyu Z, Ghoshdastidar S, Rekha KR, Suresh D, Mao J, Bivens N, Kannan R, Joshi T, Rosenfeld CS, Upendran A (2021) Developmental exposure to silver nanoparticles leads to long term gut dysbiosis and neurobehavioral alterations. Sci Rep 11(1):1–4. https://doi.org/10.1038/s41598-021-85919-7

    Article  CAS  Google Scholar 

  80. Kakakhel MA, Wu F, Sajjad W, Zhang Q, Khan I, Ullah K, Wang W (2021) Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environ Sci Eur 33(1):1–11. https://doi.org/10.1186/s12302-021-00453-7

    Article  CAS  Google Scholar 

  81. Monteiro De Oliveira EC, Caixeta ES, Santos VS, Pereira BB (2021) Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions. J Toxicol Environ Health B Crit Rev 24(3):119–135. https://doi.org/10.1080/10937404.2021.1898504

    Article  CAS  PubMed  Google Scholar 

  82. Hull EA, Barajas M, Burkart KA, Fung SR, Jackson BP, Barrett PM, Neumann RB, Olden JD, Gawel JE (2021) Human health risk from consumption of aquatic species in arsenic-contaminated shallow urban lakes. Sci Total Environ 770:145318. https://doi.org/10.1016/j.scitotenv.2021.145318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alvarez CC, Gómez ME, Zavala AH (2021) Hexavalent chromium: regulation and health effects. J Trace Elem Med Biol 65:126729. https://doi.org/10.1016/j.jtemb.2021.126729

    Article  CAS  PubMed  Google Scholar 

  84. Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MM, Rezania S, Radwan N, Alam J (2021) Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage 285:112174. https://doi.org/10.1016/j.jenvman.2021.112174

    Article  CAS  PubMed  Google Scholar 

  85. Manoj S, RamyaPriya R, Elango L (2021) Long-term exposure to chromium contaminated waters and the associated human health risk in a highly contaminated industrialised region. Environ Sci Pollut Res 28(4):4276–4288. https://doi.org/10.1007/s11356-020-10762-8

    Article  CAS  Google Scholar 

  86. Morrone A, Bordignon V, Barnabas GA, Dassoni F, Latini O, Padovese V, Ensoli F, Cristaudo A (2014) Clinical-epidemiological features of contact dermatitis in rural and urban communities in northern E thiopia: correlation with environmental or occupational exposure. Int J Dermatol 53(8):975–980. https://doi.org/10.1111/j.1365-4632.2012.05777.x

    Article  CAS  PubMed  Google Scholar 

  87. Zhu Q, Liao S, Lu X, Shi S, Gong D, Cheang I, Zhu X, Zhang H, Li X (2021) Cobalt exposure in relation to cardiovascular disease in the United States general population. Environ Sci Pollut Res 28:41834–41842. https://doi.org/10.1007/s11356-021-13620-3

    Article  CAS  Google Scholar 

  88. Cempel M, Nikel GJ (2006) Nickel: a review of its sources and environmental toxicology. Polish J of Environ Stud 15(3):375–382

    CAS  Google Scholar 

  89. Doig LE, Liber K (2007) Nickel speciation in the presence of different sources and fractions of dissolved organic matter. Ecotoxicol Environ Saf 66(2):169–177. https://doi.org/10.1016/j.ecoenv.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  90. Combs G Jr, Combs SB (1986) The role of selenium in nutrition. Academic Press Inc, Orlando

    Google Scholar 

  91. Fishbein L (1981) Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium, and nickel. Environ Health Perspect 40:43–64. https://doi.org/10.1289/ehp.814043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nema P, Ojha C, Kumar A, Khanna P (2001) Techno-economic evaluation of soil-aquifer treatment using primary effluent at Ahmedabad. India Water Res 35(9):2179–2190. https://doi.org/10.1016/S0043-1354(00)00493-0

    Article  CAS  PubMed  Google Scholar 

  93. Thornton I (1992) Sources and pathways of cadmium in the environment. IARC Sci Publ 118:149

    CAS  Google Scholar 

  94. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887. https://doi.org/10.1016/j.ecoenv.2020.111887

    Article  CAS  PubMed  Google Scholar 

  95. Riaz U, Aslam A, uz Zaman Q, Javeid S, Gul R, Iqbal S, Javid S, Murtaza G, Jamil M (2021) Cadmium contamination, bioavailability, uptake mechanism and remediation strategies in soil-plant-environment system: a critical review. Curr Anal Chem 17(1):49–60. https://doi.org/10.2174/1573411016999200817174311

    Article  CAS  Google Scholar 

  96. Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64. https://doi.org/10.1515/intox-2015-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Joint FAO/WHO Expert Committee on Food Additives (2013) Meeting, World Health Organization. Evaluation of certain food additives and contaminants: seventy-seventh report of the joint FAO/WHO expert committee on food additives. Geneva, Switzerland

  98. EFSA (2008) Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Food Contact Material (AFC). EFSA, Parma, Italy

  99. Guideline WH (2012) Potassium intake for adults and children. World Health Organization (WHO): Geneva. Switzerland 2012:1–52

    Google Scholar 

  100. Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc (Online) 101(3):294–301. https://doi.org/10.1016/S0002-8223(01)00078-5

    Article  CAS  Google Scholar 

  101. Meeting JFWECoFA (2006) Residue evaluation of certain veterinary drugs: Joint FAO/WHO Expert Committee on Food Additives, 66th Meeting 2006, vol 2. Food & Agriculture Org., Italy

  102. Hambidge K (1986) Trace elements in human and animal nutrition. Zinc 2:13–19

    Google Scholar 

  103. Organization WH (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  104. Dawson RJ (1995) The role of the Codex Alimentarius Commission in setting food standards and the SPS agreement implementation. Food Control 6(5):261–265. https://doi.org/10.1016/09567135(95)00033-N

    Article  Google Scholar 

  105. Al-Eed MA, Assubaie FN, El-Garawany MM, El-Hamshary H, El-Tayeb ZM (1997) Determination of heavy metal levels in common spices. Am J Agric Biol Sci 2(5):223–226

    Google Scholar 

  106. Smart G, Sherlock J (1987) Nickel in foods and the diet. Food Addit Contam 4(1):61–71. https://doi.org/10.1080/02652038709373616

    Article  CAS  PubMed  Google Scholar 

  107. Nielsen FH (1991) Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB J 5(12):2661–2667. https://doi.org/10.1096/fasebj.5.12.1916090

    Article  CAS  PubMed  Google Scholar 

  108. Aghamirlou HM, Khadem M, Rahmani A, Sadeghian M, Mahvi AH, Akbarzadeh A, Nazmara S (2015) Heavy metals determination in honey samples using inductively coupled plasma-optical emission spectrometry. J Environ Health Sci Eng 13(1):39. https://doi.org/10.1186/s40201-015-0189-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schrauzer GN, Shrestha KP (1990) Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res 25(2):105–113. https://doi.org/10.1007/BF02990271

    Article  CAS  PubMed  Google Scholar 

  110. Joint FA, WHO Expert Committee on Food Additives, World Health Organization (1972) Evaluation of certain food additives and the contaminants mercury, lead, and cadmium: sixteenth report of the Joint FAO. World Health Organization; Geneva, Switzerland

  111. Regulation EC (2006) Setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 1881(2006):L364

    Google Scholar 

  112. Joint FAO/WHO Expert Committee on Food Additives (2007) Meeting, World Health Organization. Evaluation of certain food additives and contaminants: sixty-eighth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization

  113. Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S (2020) Quality comparison of multifloral honeys produced by Apis cerana cerana Apis dorsata and Lepidotrigona flavibasis. LWT 134:110225. https://doi.org/10.1016/j.lwt.2020.110225

    Article  CAS  Google Scholar 

  114. Mukaka M (2012) Statistics corner: a guide to appropriate use of correlation in medical research. Malawi Med J 24 (3):69–71. https://pubmed.ncbi.nlm.nih.gov/23638278/. Accessed 04.05.2021

  115. Kumar A, Ramanathan AL, Prasad MB, Datta D, Kumar M (2014) Sappal SM (2016) Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December. Environ Sci Pollut Res 23(9):8985–8999. https://doi.org/10.1007/s11356-016-6086-6

    Article  CAS  Google Scholar 

  116. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200. https://doi.org/10.1007/BF02289233

    Article  Google Scholar 

  117. Zheng J, Bock DC, Tang T, Zhao Q, Yin J, Tallman KR, Wheeler G, Liu X, Deng Y, Jin S, Marschilok AC (2021) Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nat Energy 6(4):398–406. https://doi.org/10.1038/s41560-021-00797-7

    Article  CAS  Google Scholar 

  118. Duggan JM, Dickeson JE, Tynan PF, Houghton A, Flynn JE (1992) Aluminium beverage cans as a dietary source of aluminium. Med J Aust 156(9):604–605. https://doi.org/10.5694/j.1326-5377.1992.tb121455.x

    Article  CAS  PubMed  Google Scholar 

  119. Barabasz W, Albinska D, Jaskowska M, Lipiec J (2002) Ecotoxicology of aluminium. Pol J Environ Stud 11(3):199–203

    CAS  Google Scholar 

  120. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. https://doi.org/10.1016/0009-2541(94)00140-4

  121. Duzgoren-Aydin NS (2007) Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci Total Environ 385(1–3):182–195. https://doi.org/10.1016/j.scitotenv.2007.06.047

    Article  CAS  PubMed  Google Scholar 

  122. Hashem MA, Nur-A-Tomal MS, Mondal NR, Rahman MA (2017) Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environ Chem Lett 15(3):501–506. https://doi.org/10.1007/s10311-017-0634-2

    Article  CAS  Google Scholar 

  123. Ravishankar S, Juneja VK (2014) Preservatives: traditional preservatives-sodium chloride. InEncyclopedia of Food Microbiology: Second Edition 131–136 Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00259-7

  124. Meng Y, Cave M, Zhang C (2020) Identifying geogenic and anthropogenic controls on different spatial distribution patterns of aluminium, calcium and lead in urban topsoil of Greater London Authority area. Chemosphere 238:124541. https://doi.org/10.1016/j.chemosphere.2019.124541

    Article  CAS  PubMed  Google Scholar 

  125. Poznanović Spahić MM, Sakan SM, Glavaš-Trbić BM, Tančić PI, Škrivanj SB, Kovačević JR, Manojlović DD (2019) Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia). J Environ Sci Health A 54(3):219–230. https://doi.org/10.1080/10934529.2018.1544802

    Article  CAS  Google Scholar 

  126. Hanzlik RP, Fowler SC, Fisher DH (2005) Relative bioavailability of calcium from calcium formate, calcium citrate, and calcium carbonate. J Pharmacol Exp Ther 313(3):1217–1222. https://doi.org/10.1124/jpet.104.081893

    Article  CAS  PubMed  Google Scholar 

  127. Mitra A (2019) Estuarine pollution in the lower Gangetic Delta. Springer, Cham

  128. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56. https://doi.org/10.1016/j.tox.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  129. Caroli S, Forte G, Iamiceli AL, Galoppi B (1999) Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques. Talanta 50(2):327–336. https://doi.org/10.1016/S0039-9140(99)00025-9

    Article  CAS  PubMed  Google Scholar 

  130. Conti ME, Canepari S, Finoia MG, Mele G, Astolfi ML (2018) Characterization of Italian multifloral honeys on the basis of their mineral content and some typical quality parameters. J Food Compost Anal 74:102–113. https://doi.org/10.1016/j.jfca.2018.09.002

    Article  CAS  Google Scholar 

  131. Bontempo L, Camin F, Ziller L, Perini M, Nicolini G, Larcher R (2017) Isotopic and elemental composition of selected types of Italian honey. Measurement 98:283–289. https://doi.org/10.1016/j.measurement.2015.11.022

    Article  Google Scholar 

  132. Batista B, Da Silva L, Rocha B, Rodrigues J, Berretta-Silva A, Bonates T, Gomes V, Barbosa R, Barbosa F (2012) Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Res Int 49(1):209–215. https://doi.org/10.1016/j.foodres.2012.07.015

    Article  CAS  Google Scholar 

  133. Chua LS, Abdul-Rahaman N-L, Sarmidi MR, Aziz R (2012) Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chem 135(3):880–887. https://doi.org/10.1016/j.foodchem.2012.05.106

    Article  CAS  PubMed  Google Scholar 

  134. Losfeld G, Saunier JB, Grison C (2014) Minor and trace-elements in apiary products from a historical mining district (Les Malines, France). Food Chem 146:455–459. https://doi.org/10.1016/j.foodchem.2013.08.105

    Article  CAS  PubMed  Google Scholar 

  135. Conti ME, Finoia MG, Fontana L, Mele G, Botrè F, Iavicoli I (2014) Characterization of Argentine honeys on the basis of their mineral content and some typical quality parameters. Chem Cent J 8(1):1–10. https://doi.org/10.1186/1752-153X-8-44

    Article  CAS  Google Scholar 

  136. Döker S, Aydemir O, Uslu M (2014) Evaluation of digestion procedures for trace element analysis of Cankiri, Turkey honey by inductively coupled plasma mass spectrometry. Anal Lett 47(12):2080–2094. https://doi.org/10.1080/00032719.2014.895908

    Article  CAS  Google Scholar 

  137. Bilandžić N, Gajger IT, Kosanović M, Čalopek B, Sedak M, Kolanović BS, Varenina I, Luburić ĐB, Varga I, Đokić M (2017) Essential and toxic element concentrations in monofloral honeys from southern Croatia. Food Chem 234:245–253. https://doi.org/10.1016/j.foodchem.2017.04.180

    Article  CAS  PubMed  Google Scholar 

  138. Pisani A, Protano G, Riccobono F (2008) Minor and trace elements in different honey types produced in Siena County (Italy). Food Chem 107:1553–1560

    Article  CAS  Google Scholar 

  139. Mračević SĐ, Krstić M, Lolić A, Ražić S (2020) Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchem J 152:104420. https://doi.org/10.1016/j.microc.2019.104420

    Article  CAS  Google Scholar 

  140. Bosancic B, Zabic M, Mihajlovic D, Samardzic J, Mirjanic G (2020) Comparative study of toxic heavy metal residues and other properties of honey from different environmental production systems. Environ Sci Pollut Res 27(30):38200–38211. https://doi.org/10.1007/s11356-020-09882-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the ICP-OES facility, UPE-Scheme of University of Calcutta and Bose Institute for providing financial and infrastructural support. The authors also extend their acknowledgement to the villagers and different organisations like Sundarban Green Environment Association, Universal Bee Club etc. for their continuous support.

Funding

The authors are thankful to the ICP-OES facility, UPE-Scheme of University of Calcutta and Bose Institute for providing financial and infrastructural support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T. G. (Tanushree Gaine), P. C. (Punarbasu Chaudhuri); methodology: T. G. (Tanushree Gaine), P. T. (Praveen Tudu), S. M. (Shouvik Mahanty), S. G. (Somdeep Ghosh), M. B. (Madhurima Bakshi), N. N. (Nabanita Naskar); formal analysis and investigation: T. G. (Tanushree Gaine), P. T. (Praveen Tudu), S. C. (Souparna Chakrabarty); writing—original draft preparation: T. G. (Tanushree Gaine); writing—review and editing: T. G. (Tanushree Gaine), P. T. (Praveen Tudu); funding acquisition: P. C. (Punarbasu Chaudhuri); resources: P. C. (Punarbasu Chaudhuri), S. B. (Subarna Bhattacharyya), S. G. B. (Swati Gupta Bhattacharya), K. B. (Kashinath Bhattacharya); supervision: P. C. (Punarbasu Chaudhuri).

Corresponding author

Correspondence to Tanushree Gaine.

Ethics declarations

Ethical Approval

Clinical trials or patient details are not applicable for the manuscript.

Consent to Participate (include appropriate statements)

Not applicable.

Consent for Publication (include appropriate statements)

The authors give the consent for the publication of identifiable details which include details within the text, photographs and other specifications to be published in the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 234 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaine, T., Tudu, P., Ghosh, S. et al. Differentiating Wild and Apiary Honey by Elemental Profiling: a Case Study from Mangroves of Indian Sundarban. Biol Trace Elem Res 200, 4550–4569 (2022). https://doi.org/10.1007/s12011-021-03043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03043-z

Keywords

Navigation