Skip to main content
Log in

Preconcentrations of Zn(II) and Hg(II) in Environmental and Food Samples by SPE on B. licheniformis Loaded Amberlite XAD-4

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this work, the separations and preconcentrations of Zn(II) and Hg(II) ions on Bacillus lichenifoemis loaded onto Amberlite XAD-4 resin by solid-phase extraction has been performed. The biosorbent was characterized by using FT-IR, SEM, and EDX. pH, sample flow rate, eluent type and concentration, amount of B. licheniformis and XAD-4 resin, sample volume, and possible interfering ions effect were investigated in details as experimental variables in the SPE procedure. Limit of detection values for Zn(II) and Hg(II) were detected as 0.03 and 0.06 ng mL−1, respectively. 0.2–15 ng mL−1 linear range values were achieved for Zn(II) and Hg(II), respectively. Relative standard deviation values were found to be lower than 5%. For validation of the procedure, the certified standard reference materials (CWW-TM-D, EU-L-2, NCS ZC73O14, NCS ZC73350) were analyzed. The concentrations of Zn(II) and Hg(II) in water and food samples were measured by ICP-OES. Consequently, it can be inferred that the immobilized B. licheniformis microcolumn has ideal selectivity for Zn(II) and Hg(II) biosorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sahmoune MN (2018) Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J 141:87–95. https://doi.org/10.1016/j.microc.2018.05.009

    Article  CAS  Google Scholar 

  2. Mishra V (2017) Modeling of batch sorber system: kinetic, mechanistic, and thermodynamic modeling. Appl Water Sci 7:3173–3180. https://doi.org/10.1007/s13201-016-0463-7

    Article  Google Scholar 

  3. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rajbanshi A (2008) Study on heavy metal resistant bacteria in Guheswori sewage treatment plant. Our Nature 6:52–57. https://doi.org/10.3126/on.v6i1.1655

    Article  Google Scholar 

  5. Diels L, Van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82

    Article  CAS  Google Scholar 

  6. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141. https://doi.org/10.1016/j.biortech.2013.12.110

    Article  CAS  PubMed  Google Scholar 

  7. Hlihor RM, Bulgariu L, Sobariu DL, Diaconu M, Tavares T, Gavrilescu M (2014) Recent advances in biosorption of heavy metals: support tools for biosorption equilibrium, kinetics and mechanism. Rev Roum Chim 59(6–7):527–538

    Google Scholar 

  8. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water–a comprehensive review. Res-Eff Tech 2:175–184. https://doi.org/10.1016/j.reffit.2016.09.004

    Article  Google Scholar 

  9. Ahmad A, Bhat A, Buang A (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod 171:1361–1375. https://doi.org/10.1016/j.jclepro.2017.09.252

    Article  CAS  Google Scholar 

  10. Soylak M, Acar D, Yilmaz E, El-Khodary SA, Morsy M, Ibrahim M (2017) Magnetic graphene oxide as an efficient adsorbent for the separation and preconcentration of Cu (II), Pb (II), and Cd (II) from environmental samples. J AOAC Int 100:1544–1550. https://doi.org/10.5740/jaoacint.16-0230

    Article  CAS  PubMed  Google Scholar 

  11. Wierzba S (2015) Biosorption of lead (II), zinc (II) and nickel (II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Pol J Chem Technol 17(1):79–87. https://doi.org/10.1515/pjct-2015-0012

    Article  CAS  Google Scholar 

  12. Aryal M (2020) A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. Rev Chem Eng. https://doi.org/10.1515/revce-2019-0016

    Article  Google Scholar 

  13. Nabieh KA, Mortada WI, Helmy TE, Kenawy IM, Abou El-Reash YG (2021) Chemically modified rice husk as an effective adsorbent for removal of palladium ions. Heliyon 7(1):e06062. https://doi.org/10.1016/j.heliyon.2021.e06062

    Article  PubMed  PubMed Central  Google Scholar 

  14. Topuz B, Batmaz F, Külköylüoğlu O, Çapraz Ç (2021) First usage of ostracod species (Herpetocypris brevicaudata) carapace as a biosorbent with XAD-4 resin to determine Co (II), Cu (II) and Mn (II) trace metal ions. Microchem J 167:106335. https://doi.org/10.1016/j.microc.2021.106335

    Article  CAS  Google Scholar 

  15. Chatterjee S, Bhattacharjee I, Chandra G (2010) Biosorption of heavy metals from industrial waste water by Geobacillusthermodenitrificans. J Hazard Mater 175:117–125. https://doi.org/10.1016/j.jhazmat.2009.09.136

    Article  CAS  PubMed  Google Scholar 

  16. Allievi MC, Sabbione F, Prado Acosta M, Palomino MM, Ruzal SM, Sanchez C (2011) Metal biosorption by surface-layer proteins from Bacillus species. J Microbiol Biotechnol 21(2):147–153. https://doi.org/10.4014/jmb.1009.09046

    Article  CAS  PubMed  Google Scholar 

  17. Kilinc E, Dündar A, Özdemir S, Okumuş V (2013) Solid phase extraction based on the use of Agaricusarvensis as a fungal biomass for the peconcentrations of Pb and Al prior to their determination in vegetables by ICP-OES. At Spectrosc 34(3):78–88. https://doi.org/10.46770/as.2013.03.002

    Article  CAS  Google Scholar 

  18. Özdemir S, Gul-Guven R, Kilinc E, Dogru M, Erdogan S (2010) Preconcentration of cadmium and nickel using the bioadsorbent Geobacillus thermoleovorans subsp. stromboliensis immobilized on Amberlite XAD-4. Microchim Acta 169(1–2):79–85. https://doi.org/10.1007/s00604-010-0300-x

    Article  CAS  Google Scholar 

  19. Erbas Z, Soylak M, Ozdemir S, Kilinc E (2019) Fe3O4@ SiO2@ Bacillus pumilis: magnetised solid phase bio-extractor for preconcentration of Pb (II) and Cu (II) from water samples. Int J Environ Anal Chem 99:1112–1122. https://doi.org/10.1080/03067319.2019.1616710

    Article  CAS  Google Scholar 

  20. Okumuş V, Özdemir S, Kılınç E, Dündar A, Yüksel U, Baysal Z (2015) Preconcentration with Bacillus subtilis–immobilized amberlite XAD-16: determination of Cu2+ and Ni2+ in river, soil, and vegetable samples. Bioremediation J 19(1):47–55. https://doi.org/10.1080/10889868.2014.938724

    Article  CAS  Google Scholar 

  21. Ozdemir S, Kılınç E, Fatih S (2020) A novel biosorbent for preconcentrations of co (ii) and Hg (ii) in real samples. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-019-57401-y

    Article  CAS  Google Scholar 

  22. Özdemir S, Yalçın MS, Kılınç E (2021) Preconcentrations of Ni (II) and Pb (II) from water and food samples by solid-phase extraction using Pleurotusostreatus immobilized iron oxide nanoparticles. Food Chem 336:127675. https://doi.org/10.1016/j.foodchem.2020.127675

    Article  CAS  PubMed  Google Scholar 

  23. Ozdemir S, Mohamedsaid SA, Kilinc E, Yıldırım A, Soylak M (2018) Application of magnetized fungal solid phase extractor with Fe2O3 nanoparticle for determination and preconcentration of Co (II) and Hg(II) from natural water samples. Microchem J 143:198–204. https://doi.org/10.1016/j.microc.2018.07.032

    Article  CAS  Google Scholar 

  24. Sassi M, Bestani B, Said AH, Benderdouche N, Guibal E (2010) Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant. Desalination 262:243–250. https://doi.org/10.1016/j.desal.2010.06.022

    Article  CAS  Google Scholar 

  25. Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32. https://doi.org/10.1007/s00216-003-1843-z

    Article  CAS  PubMed  Google Scholar 

  26. Joo J-H, Hassan SH, Oh S-E (2010) Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterior Biodegrad 64:734–741. https://doi.org/10.1016/j.ibiod.2010.08.007

    Article  CAS  Google Scholar 

  27. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466–471. https://doi.org/10.1016/j.jhazmat.2009.03.119

    Article  CAS  PubMed  Google Scholar 

  28. Dev K, Rao G (1995) Preparation and analytical properties of a chelating resin containing bicine groups. Talanta 42:591–596. https://doi.org/10.1016/0039-9140(95)01452-H

    Article  CAS  PubMed  Google Scholar 

  29. Behbahani M, Tapeh NAG, Mahyari M, Pourali AR, Amin BG, Shaabani A (2014) Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet. Environ Monit Assess 186(11):7245–7257. https://doi.org/10.1007/s10661-014-3924-1

    Article  CAS  PubMed  Google Scholar 

  30. Yalçın MS, Kılınç E, Özdemir S, Yüksel U, Soylak M (2020) Phallus impudicus loaded with γ-Fe2O3 as solid phase bioextractor for the preconcentrations of Zn (II) and Cr (III) from water and food samples. Process Biochem 2020(92):149–155. https://doi.org/10.1016/j.procbio.2020.03.012

    Article  CAS  Google Scholar 

  31. Özdemir S, Mohamedsaid SA, Kılınç E, Soylak M (2019) Magnetic solid phase extractions of Co (II) and Hg (II) by using magnetized C. micaceus from water and food samples. Food Chem 271:232–238. https://doi.org/10.1016/j.foodchem.2018.07.067

    Article  CAS  PubMed  Google Scholar 

  32. Özdemir S, Kılınç E, Poli A, Romano I, Nicolaus B, Mustafov SD et al (2021) Extraction of Cu2+ and Co2+ by using Tricholomapopulinum loaded onto Amberlite XAD-4. IJEST 18:185–194. https://doi.org/10.1007/s13762-020-02845-3

    Article  CAS  Google Scholar 

  33. Tuzen M, Uluozlu OD, Usta C, Soylak M (2007) Biosorption of copper (II), lead (II), iron (III) and cobalt (II) on Bacillus sphaericus-loaded Diaion SP-850 resin. Anal Chim Acta 581:241–246. https://doi.org/10.1016/j.aca.2006.08.040

    Article  CAS  PubMed  Google Scholar 

  34. Ansari MI, Masood F, Malik A (2011) Bacterial biosorption: a technique for remediation of heavy metals. Microbes Microb Technol 283-319. https://doi.org/10.1007/978-1-4419-7931-5_12

  35. Pytlakowska K, Matussek M, Hachuła B, Pilch M, Kornaus K, Zubko M et al (2018) Graphene oxide covalently modified with 2, 2′-iminodiacetic acid for preconcentration of Cr (III), Cu (II), Zn (II) and Pb (II) from water samples prior to their determination by energy dispersive X-ray fluorescence spectrometry. Spectrochim Acta Part B At Spectrosc 147:79–86. https://doi.org/10.1016/j.sab.2018.05.023

    Article  CAS  Google Scholar 

  36. Roushani M, Abbasi S, Khani H, Sahraei R (2015) Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions. Food Chem 173:266–273. https://doi.org/10.1016/j.foodchem.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  37. Zawisza B, Sitko R (2013) Micro-electrodeposition in the presence of ionic liquid for the preconcentration of trace amounts of Fe Co, Ni and Zn from aqueous samples. Spectrochim Acta Part B At Spectrosc 82:60–64. https://doi.org/10.1016/j.sab.2013.01.003

    Article  CAS  Google Scholar 

  38. Escudero LA, Martinez LD, Salonia JA, Gasquez JA (2010) Determination of Zn (II) in natural waters by ICP-OES with on-line preconcentration using a simple solid phase extraction system. Microchem J 95:164–168. https://doi.org/10.1016/j.microc.2009.11.003

    Article  CAS  Google Scholar 

  39. Feist B, Sitko R (2019) Fast and sensitive determination of heavy metal ions as batophenanthroline chelates in food and water samples after dispersive micro-solid phase extraction using graphene oxide as sorbent. Microchem J 147:30–36. https://doi.org/10.1016/j.microc.2019.03.013

    Article  CAS  Google Scholar 

  40. Shi M-t, Yang X-a, Zhang W-b (2019) Magnetic graphitic carbon nitride nano-composite for ultrasound-assisted dispersive micro-solid-phase extraction of Hg (II) prior to quantitation by atomic fluorescence spectroscopy. Anal Chim Acta 1074:33–42. https://doi.org/10.1016/j.aca.2019.04.062

    Article  CAS  PubMed  Google Scholar 

  41. Keramat A, Zare-Dorabei R (2017) Ultrasound-assisted dispersive magnetic solid phase extraction for preconcentration and determination of trace amount of Hg (II) ions from food samples and aqueous solution by magnetic graphene oxide (Fe3O4@ GO/2-PTSC): Central composite design optimization. Ultrason Sonochem 38:421–429. https://doi.org/10.1016/j.ultsonch.2017.03.039

    Article  CAS  PubMed  Google Scholar 

  42. Karimi MA, Hatefi-Mehrjardi A, Askarpour Kabir A (2014) Application of modified magnetite nanoparticles as a new sorbent for separation/preconcentration of mercury (II) trace amounts and its determination by cold vapor atomic absorption spectrometry. Croat Chem Acta 87:129–136. https://doi.org/10.5562/cca2195

    Article  CAS  Google Scholar 

  43. Abolhasani J, Khanmiri RH, Babazadeh M, Ghorbani-Kalhor E, Edjlali L, Hassanpour A (2015) Determination of Hg (II) ions in sea food samples after extraction and preconcentration by novel Fe 3 O 4@ SiO 2@ polythiophene magnetic nanocomposite. Environ Monit Assess 187:1–11. https://doi.org/10.1007/s10661-015-4770-5

    Article  CAS  Google Scholar 

  44. Ozdemir S, Kilinc E, Celik KS, Okumus V, Soylak M (2017) Simultaneous preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chem 215:447–453. https://doi.org/10.1016/j.foodchem.2016.07.055

    Article  CAS  PubMed  Google Scholar 

  45. Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R, Abolhasani J, Babazadeh M, Hassanpour A (2015) Determination of mercury (II) ions in seafood samples after extraction and preconcentration by a novel functionalized magnetic metal–organic framework nanocomposite. J Sep Sci 38:1179–1186. https://doi.org/10.1002/jssc.201401320

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Acer.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 391 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, S., Kılınç, E., Acer, Ö. et al. Preconcentrations of Zn(II) and Hg(II) in Environmental and Food Samples by SPE on B. licheniformis Loaded Amberlite XAD-4. Biol Trace Elem Res 200, 1972–1980 (2022). https://doi.org/10.1007/s12011-021-03000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03000-w

Keywords

Navigation