Skip to main content
Log in

Effect of Zinc Deficiency on Blood Glucose, Lipid Profile, and Antioxidant Status in Streptozotocin Diabetic Rats and the Potential Role of Sesame Oil

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is recognized to have a crucial function in insulin production. As a result, its absence may have a deleterious impact on the progression of diabetes and associated consequences. So, this study was undertaken to evaluate the effect of sesame oil on biochemical parameters, zinc status, and oxidative stress biomarkers in streptozotocin (STZ)-induced diabetic rats fed zinc-deficient diet. Rats were divided into four groups. The first group consisted of non-diabetic rats that were fed in a sufficient zinc diet, whereas the second was a diabetic group which received also sufficient zinc diet, while the third and fourth groups were diabetic rats fed in a deficient zinc diet, one was non-treated and the other was treated with sesame oil 6% diet for 27 days. Zinc deficiency has affected the weight of the diabetic animals. It was also noticed that inadequate dietary zinc intake increased concentrations of glucose, cholesterol, triglycerides, malondialdehyde, and transaminases activities. Furthermore, zinc deficiency feed provoked a decrease in zinc level in tissues (femur, liver, and pancreas); glutathione concentration; and lactic dehydrogenase, amylase, catalase, superoxide dismutase, and glutathione-S-transferase activities. However, sesame oil treatment ameliorated all the previous parameters approximately to their normal values. It was found out that sesame oil supplementation is a potent factor in mitigating the oxidative severity of zinc deficiency in diabetes through its effective antioxidant potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Ullah A, Khan A, Khan I (2016) Diabetes mellitus and oxidative stress—a concise review. Saud Pharm J 24:547–553. https://doi.org/10.1016/j.jsps.2015.03.013

    Article  Google Scholar 

  2. Cho N, Shaw JE, Karuranga S et al (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  3. Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E (2017) chronic complications of diabetes mellitus: a mini review. Curr Diabetes Rev 13:3–10. https://doi.org/10.2174/1573399812666151016101622

    Article  CAS  PubMed  Google Scholar 

  4. Tichati L, Trea F, Ouali K (2020) Potential role of selenium against hepatotoxicity induced by 2, 4-dichlorophenoxyacetic acid in albino Wistar rats. Biol Trace Elem Res 194:228–236. https://doi.org/10.1007/s12011-019-01773-9

    Article  CAS  PubMed  Google Scholar 

  5. Gholamhoseinian A, Shahouzehi B, Mohammadi G (2020) Trace elements content of some traditional plants used for the treatment of diabetes mellitus. Biointerface Res Appl Chem. 10:6167–6173. https://doi.org/10.33263/BRIAC105.61676173

    Article  CAS  Google Scholar 

  6. Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME (2020) Recent aspects of the effects of zinc on human health. Arch Toxicol 94(5):1443–1460. https://doi.org/10.1007/s00204-020-02702-9

    Article  CAS  PubMed  Google Scholar 

  7. Marreiro DDN, Cruz KJC, Morais JBS, Beserra JB, Severo JS, De Oliveira ARS (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6:24. https://doi.org/10.3390/antiox6020024

    Article  CAS  PubMed Central  Google Scholar 

  8. Hamdiken M, Bouhalit S, Kechrid Z (2018) Effect of Ruta chalepensis on zinc, lipid profile and antioxidant levels in the blood and tissue of streptozotocin-induced diabetes in rats fed zinc-deficient diets. Can J Diabetes 42:356–364. https://doi.org/10.1016/j.jcjd.2017.08.239

    Article  PubMed  Google Scholar 

  9. Ruz M, Carrasco F, Sánchez A, Perez A, Rojas P (2016) Does zinc really “metal” with diabetes? The epidemiologic evidence. Curr Diab Rep 16:111. https://doi.org/10.1007/s11892-016-0803-x

    Article  CAS  PubMed  Google Scholar 

  10. Zhao T, Huang Q, Su Y, Sun W, Huang Q, Wei W (2019) Zinc and its regulators in pancreas. Inflammopharmacology 27:453–464. https://doi.org/10.1007/s10787-019-00573-w

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Yan C, Yang Z et al (2017) Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol 40:91–96. https://doi.org/10.1016/j.jtemb.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  12. Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR (2017) NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol 312:C47–C55. https://doi.org/10.1152/ajpcell.00208.2016

    Article  PubMed  Google Scholar 

  13. Shi LK, Zheng L, Jin QZ, Wang XG (2017) Effects of adsorption on polycyclic aromatic hydrocarbon, lipid characteristic, oxidative stability, and free radical scavenging capacity of sesame oil. Eur J Lipid Sci Technol 119:1700150. https://doi.org/10.1002/ejlt.201700150

    Article  CAS  Google Scholar 

  14. Afroz M, Zihad SNK, Uddin SJ et al (2019) A systematic review on antioxidant and antiinflammatory activity of Sesame (Sesamum indicum L.) oil and further confirmation of antiinflammatory activity by chemical profiling and molecular docking. Phytother Res 33:2585–2608. https://doi.org/10.1002/ptr.6428

    Article  CAS  PubMed  Google Scholar 

  15. Deme P, Alicante NC, Parthasarathy S (2019) Evaluation of anti-inflammatory properties of herbal aqueous extracts and their chemical characterization. J Med Food 22:861–873. https://doi.org/10.1089/jmf.2019.0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mushtaq A, Hanif MA, Ayub MA, Bhatti IA, Jilani MI (2020) Sesame. Medicinal Plants of South Asia. Elsevier, p 601–615. https://doi.org/10.1016/B978-0-08-102659-5.00044-6

  17. Taha NM, Mandour AEA, Mohamed MK (2014) Effect of sesame oil on serum and liver lipid profile in hyperlipidemic rats. Alex J Vet Sci 43:17–25. https://doi.org/10.5455/ajvs.166197

    Article  Google Scholar 

  18. Haidari F, Mohammadshahi M, Zarei M, Gorji Z (2016) Effects of sesame butter (Ardeh) versus sesame oil on metabolic and oxidative stress markers in streptozotocin-induced diabetic rats. Iran J Med Sci 41:102

    PubMed  Google Scholar 

  19. Qin H, Xu H, Yu L, Yang L, Lin C, Chen J (2019) Sesamol intervention ameliorates obesity-associated metabolic disorders by regulating hepatic lipid metabolism in high-fat diet-induced obese mice. Food Nutr Res 63:3637

    Article  CAS  Google Scholar 

  20. Liu CT, Chien SP, Hsu DZ, Periasamy S, Liu MY (2015) Curative effect of sesame oil in a rat model of chronic kidney disease. Nephrology 20:922–930. https://doi.org/10.1111/nep.12524

    Article  CAS  PubMed  Google Scholar 

  21. Mohamed EA, Ahmed HI, Zaky HS, Badr AM (2020) Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J Ethnopharmacol 267:113468. https://doi.org/10.1016/j.jep.2020.113468

    Article  CAS  PubMed  Google Scholar 

  22. Trease GE, Evans WC (1983) Textbook of Pharmacognosy. Balliere. Tindall, London 57–59

  23. Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776. https://doi.org/10.1016/j.foodchem.2006.06.022

    Article  CAS  Google Scholar 

  24. Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K (2007) Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem 101:267–273. https://doi.org/10.1016/j.foodchem.2006.01.025

    Article  CAS  Google Scholar 

  25. Hagerman AE (2002) Tannin Handbook. Miami University, Oxford

    Google Scholar 

  26. Shiau IL, Shih TL, Wang YN, Chen HT, Lan HF, Lin HC et al (2009) Quantification for saponin from a soapberry in cleaning products by a chromatographic and two colorimetric assays. J Fac Agr Kyushu Univ 54:215–221

    CAS  Google Scholar 

  27. Southon S, Kechrid Z, Wright AJA, Fairweather-Tait SJ (1988) Effect of reduced dietary zinc intake on carbohydrate and Zn metabolism in the genetically diabetic mouse (C57BL/KsJdb+/db+). Br J Nutr 60:499–507. https://doi.org/10.1079/BJN19880122

    Article  CAS  PubMed  Google Scholar 

  28. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Meth Enzymol. Academic Press 52:302–310. https://doi.org/10.1016/S0076-6879(78)52032-6

  29. Jollow DJ, Mitchell JR, Zampaglione NA, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacol 11:151–169. https://doi.org/10.1159/000136485

    Article  CAS  Google Scholar 

  30. Aebi H (1984) Catalase in vitro. Meth Enzymol. Academic Press 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

  31. Misra HP, Fridovich I (1977) Superoxide dismutase: “positive” spectrophotometric assays. Anal Biochem 79:553–560. https://doi.org/10.1016/0003-2697(77)90429-8

    Article  CAS  PubMed  Google Scholar 

  32. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

    Article  CAS  PubMed  Google Scholar 

  33. Gupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R (2012) Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J Ethnopharmacol 139:801–806. https://doi.org/10.1016/j.jep.2011.12.021

    Article  PubMed  Google Scholar 

  34. Neeta MP, Mukta N, Bilwa K (2015) Comparative qualitative phytochemical analysis of Sesamum indicum L. Int J Curr Microbiol App Sci2: 172–81.http://www.ijcmas.com

  35. Sani I, Sule FA, Warra AA, Bello F, Fakai IM, Abdulhamid A (2013) Phytochemicals and mineral elements composition of white Sesamum indicum L. seed oil. Int J Trad Nat Med 2:118–130

    Google Scholar 

  36. Sukanya V, Pandiyan V, Vijayarani K, Padmanath K (2020) A study on insulin levels and the expression of glut 4 in streptozotocin (STZ) induced diabetic rats treated with mustard oil diet. Indian J Clin Biochem 35:488–496. https://doi.org/10.1007/s12291-019-00852-x

    Article  CAS  PubMed  Google Scholar 

  37. Tebboub I, Kechrid Z (2021) Effect of curcuma on zinc, lipid profile and antioxidants levels in blood and tissue of streptozotocin-induced diabetic rats fed zinc deficiency diet. Arch Physiol Biochem 127:162–169. https://doi.org/10.1080/13813455.2019.1623820

    Article  CAS  PubMed  Google Scholar 

  38. Tebboub I, Kechrid Z (2021) Effect of ginger on zinc, lipid profile and antioxidants levels in blood and liver of streptozotocin induced diabetic rats fed on zinc deficiency diet. Indian J Exp Biol 59:168–176

    CAS  Google Scholar 

  39. Ibrahiem TA (2016) Beneficial effects of diet supplementation with Nigella sativa (Black Seed) and sesame seeds in Alloxan-Diabetic Rats. Int J Curr Microbiol Appl Sci 5:411–423. https://doi.org/10.20546/ijcmas.2016.501.041

    Article  CAS  Google Scholar 

  40. Bhuvaneswari P, Krishnakumari S (2012) Nephroprotective effects of ethanolic extract of Sesamum indicum seeds (Linn) in streptozotocin induced diabetic male albino rats. Int J Green Pharm 6:3030–3035. https://doi.org/10.22377/ijgp.v6i4.284

    Article  Google Scholar 

  41. Kechrid Z, Hamdi M, Nazıroğlu M, Flores-Arce M (2012) Vitamin D supplementation modulates blood and tissue zinc, liver glutathione and blood biochemical parameters in diabetic rats on a zinc-deficient diet. Biol Trace Elem Res 148:371–377. https://doi.org/10.1007/s12011-012-9383-z

    Article  CAS  PubMed  Google Scholar 

  42. Derai EH, Kechrid Z (2014) Combined effect of vitamins C and E on zinc status, carbohydrate metabolism and antioxidant values in diabetic rats fed zinc-deficient diet. Mediterr J Nutr Metab 7:55–65. https://doi.org/10.3233/MNM-140005

    Article  Google Scholar 

  43. Othman MS, Hafez MM, Moneim AEA (2020) The potential role of zinc oxide nanoparticles in MicroRNAs dysregulation in STZ-induced type 2 diabetes in rats. Biol Trace Elem Res 197:606–618. https://doi.org/10.1007/s12011-019-02012-x

  44. Tomat AL, de los Ángeles Costa M, Arranz CT (2011) Zinc restriction during different periods of life: influence in renal and cardiovascular diseases. Nutr 27:392–398. https://doi.org/10.1016/j.nut.2010.09.010

    Article  CAS  Google Scholar 

  45. Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab 11:202–214. https://doi.org/10.1111/j.1463-1326.2009.01110.x

    Article  CAS  PubMed  Google Scholar 

  46. Aslam F, Iqbal S, Nasir M, Anjum AA (2019) White sesame seed oil mitigates blood glucose level, reduces oxidative stress, and improves biomarkers of hepatic and renal function in participants with type 2 diabetes mellitus. J Am Coll Nutr 38:235–246. https://doi.org/10.1080/07315724.2018.1500183

    Article  CAS  PubMed  Google Scholar 

  47. Aslam F, Iqbal S, Nasir M, Anjum AA, Swan P, Sweazea K (2017) Evaluation of white sesame seed oil on glucose control and biomarkers of hepatic, cardiac, and renal functions in male Sprague-Dawley rats with chemically induced diabetes. J Med Food 20:448–457. https://doi.org/10.1089/jmf.2016.0065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bigoniya P, Nishad R, Singh CS (2012) Preventive effect of sesame seed cake on hyperglycemia and obesity against high fructose-diet induced Type 2 diabetes in rats. Food Chem 133:1355–1361. https://doi.org/10.1016/j.foodchem.2012.01.112

    Article  CAS  Google Scholar 

  49. Suryawanshi NP, Bhutey AK, Nagdeote AN, Jadhav AA, Manoorkar GS (2006) Study of lipid peroxide and lipid profile in diabetes mellitus. Indian J Clin Biochem 21:126. https://doi.org/10.1007/BF02913080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kechrid Z, El-Hadjla D, Layachi N (2007) The beneficial effect of vitamin E supplementation on zinc status, carbohydrate metabolism, transaminases and alkaline phosphatase activities in alloxan-diabetic rats fed on zinc deficiency diet. Int J Diabetes Metab 15:46

    CAS  Google Scholar 

  51. Li C, Li Y, Ma Y, Wang D, Zheng Y, Wang X (2020) Effect of black and white sesame on lowering blood lipids of rats with hyperlipidemia induced by high-fat diet. Grain Oil Sci Technol 3(2):57–63. https://doi.org/10.1016/j.gaost.2020.02.004

    Article  Google Scholar 

  52. Liang YT, Chen J, Jiao R et al (2015) Cholesterol-lowering activity of sesamin is associated with down-regulation on genes of sterol transporters involved in cholesterol absorption. J Agric Food Chem 63:2963–2969. https://doi.org/10.1021/jf5063606

    Article  CAS  PubMed  Google Scholar 

  53. Kim M, Woo M, Noh JS, Choe E, Song YO (2017) Sesame oil lignans inhibit hepatic endoplasmic reticulum stress and apoptosis in high-fat diet-fed mice. J Funct Foods 37:658–665. https://doi.org/10.1016/j.jff.2017.08.036

    Article  CAS  Google Scholar 

  54. Felig P, Marliss E, Ohman JL, Cahill GF (1970) Plasma amino acid levels in diabetic ketoacidosis. Diabetes 19:727–729. https://doi.org/10.2337/diab.19.10.727

    Article  CAS  PubMed  Google Scholar 

  55. Nain P, Saini V, Sharma S, Nain J (2012) Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. Leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 142:65–71. https://doi.org/10.1016/j.jep.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  56. Greeley S, Sandstead H (1983) Oxidation of alanine and β-hydroxybutyrate in late gestation by zinc-restricted rats. J Nutr 113:1803–1810. https://doi.org/10.1093/jn/113.9.1803

    Article  CAS  PubMed  Google Scholar 

  57. Derouiche S, Kechrid Z (2016) Zinc supplementation overcomes effects of copper on zinc status, carbohydrate metabolism and some enzyme activities in diabetic and nondiabetic rats. Can J Diabetes 40:342–347. https://doi.org/10.1016/j.jcjd.2016.02.005

    Article  PubMed  Google Scholar 

  58. Sun JY, Jing MY, Wang JF et al (2006) Effect of zinc on biochemical parameters and changes in related gene expression assessed by cDNA microarrays in pituitary of growing rats. Nutr 22:187–196. https://doi.org/10.1016/j.nut.2005.07.007

    Article  CAS  Google Scholar 

  59. Jing MY, Sun JY, Weng XY, Wang JF (2009) Effects of zinc levels on activities of gastrointestinal enzymes in growing rats. J Anim Physiol Anim Nutr (Berl) 93:606–612. https://doi.org/10.1111/j.1439-0396.2008.00843.x

    Article  CAS  Google Scholar 

  60. Mohamed NE, Wakwak MM (2014) Effect of sesame seeds or oil supplementation to the feed on some physiological parameters in Japanese quail. J Radiat Res Appl Sci 7:101–109. https://doi.org/10.1016/j.jrras.2013.12.003

    Article  CAS  Google Scholar 

  61. Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B (2015) Antioxidant strategies in the management of diabetic neuropathy. BioMed Res Int 2015:515042. https://doi.org/10.1155/2015/515042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Özcelik D, Nazıroglu M, Tunçdemir M, Çelik Ö, Öztürk M, Flores-Arce MF (2012) Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 150:342–349. https://doi.org/10.1007/s12011-012-9508-4

    Article  CAS  PubMed  Google Scholar 

  63. Yousef MI, El Hendy HA, El-Demerdash FM, Elagamy EI (2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicol 175:223–234. https://doi.org/10.1016/S0300-483X(02)00049-5

    Article  CAS  Google Scholar 

  64. Hidalgo MC, Expósito A, Palma JM, de la Higuera M (2002) Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int J Biochem Cell Biol 34:183–193. https://doi.org/10.1016/S1357-2725(01)00105-4

    Article  CAS  PubMed  Google Scholar 

  65. Wan Y, Li H, Fu G, Chen X, Chen F, Xian M (2015) The relationship of antioxidant components and antioxidant activity of sesame seed oil. J Sci Food Agric 95:2571–2578. https://doi.org/10.1002/jsfa.7035

    Article  CAS  PubMed  Google Scholar 

  66. Mahendra Kumar C, Singh SA (2015) Bioactive lignans from sesame (Sesamum indicum L.): evaluation of their antioxidant and antibacterial effects for food applications. J Food Sci Technol 52:2934–2941. https://doi.org/10.1007/s13197-014-1334-6

    Article  CAS  PubMed  Google Scholar 

  67. Moghtaderi F, Ramezani-Jolfaie N, Raeisi-Dehkordi H, Salehi-Abargouei A (2020) Sesame seed and its fractions for improving oxidative stress in adults: a systematic review and meta-analysis of controlled clinical trials. Food Rev Int 36:727–744. https://doi.org/10.1080/87559129.2019.1683744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Mr. Boulezaz Kamel, head of factory unit, ONAB, El-Harrouche, for the element composition of diet supply; Mr. Belhoshette Saif-eddine, founder of the Nature Touch Center, for oil extraction, Constantine, Algeria; and members of Algiers Pasteur Institute for providing rats.

Funding

This work was supported by the research project under the number D01N01UN230120190003, funded by the Ministry of Higher Education, Algeria.

Author information

Authors and Affiliations

Authors

Contributions

ZK formulated the present hypothesis. ZK and AB were responsible for writing the report. AB and AMB were responsible for the analysis of the data.

Corresponding author

Correspondence to Zine Kechrid.

Ethics declarations

Ethics Approval

Experimental studies were handled in accordance to the protocol approved by the Institutional Animal Ethical Committee of Badji Mokhtar University, Annaba.

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloucif, A., Kechrid, Z. & Bekada, A.M.A. Effect of Zinc Deficiency on Blood Glucose, Lipid Profile, and Antioxidant Status in Streptozotocin Diabetic Rats and the Potential Role of Sesame Oil. Biol Trace Elem Res 200, 3236–3247 (2022). https://doi.org/10.1007/s12011-021-02934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02934-5

Keywords

Navigation