Skip to main content
Log in

The Effects of Different Dietary Oil Sources on Broiler Chicken Bone Mineralization

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was designed to determine the effects of dietary hazelnut oil (HO) and sunflower oil (SO) on the mineral composition of chicken femur and tibia bones. A 40-day trial was initiated with 600 1-day-old Ross 308 chickens. Initially, the chickens were randomly divided into four main groups of 150 each according to the proportion of SO and HO supplementation in their diets: control SO (25 g/kg SO), LHO (25 g/kg HO), HHO (50 g/kg HO), and MO (50 g/kg blend of 25 g/kg SO + 25 g/kg HO). Each group was further divided into six subgroups of 25 chickens. At the end of the trial, four chickens from each of the six subgroups were randomly selected and slaughtered. Their right tibia and right femur bones were isolated and analyzed for macro (Ca, P, Mg) and trace (Fe, Cu, Mn, Zn, Cr, Co, and Se) minerals in addition to ether extract and ash. The results suggest that the diets’ fat concentration and fatty acid composition significantly affected the Ca, P, Mg, Fe, Cu, Cr, and Se composition of tibia bones (p < 0.01). The ether extract and ash contents of the femur bones were increased in both HHO and MO groups (p < 0.05), while Fe and Cr compositions were lower in all femur bones, except those from SO chickens (p < 0.05). The Se content of femur bones in the LHO group was higher than the other treatment groups (p < 0.05). In conclusion, the amount of oil and fatty acid in the diet affected the accumulation of Ca, P, Mg, Fe, Cu, and Cr minerals in the tibia bone. Moreover, the amount of Cr and Fe was lower in the femur and tibia bones in the group that received the HO supplement and all groups in which the amount of oil fed was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dibner JJ, Richards JD, Kitchell ML, Quiroz MA (2007) Metabolic challenges and early bone development. J Appl Poult Res 16:126–137. https://doi.org/10.1093/japr/16.1.126

    Article  CAS  Google Scholar 

  2. Watkins BA, Li Y, Lippman HE, Seifert MF (2001) Omega-3 polyunsaturated fatty acids and skeletal health. Exp Biol Med 226:485–497. https://doi.org/10.1177/153537020122600601

    Article  CAS  Google Scholar 

  3. Whitehead CC, Dewar WA, Downie JN (1971) Effect of dietary fat on mineral retention in the chick. Br Poult Sci 12:249–254. https://doi.org/10.1080/00071667108415877

    Article  Google Scholar 

  4. Atteh JO, Leeson S, Julian RJ (1983) Effects of dietary levels and types of fat on performance and mineral metabolism of broiler chicks. Poult Sci 62:2403–2411. https://doi.org/10.3382/ps.0622403

    Article  CAS  PubMed  Google Scholar 

  5. Underwood E, Suttle N (2001) The mineral nutrition of livestock, 3rd edn. CABI, Egham

    Google Scholar 

  6. Rath NC, Huff GR, Huff WE, Balog JM (2000) Factors regulating bone maturity and strength in poultry. Poult Sci 79:1024–1032. https://doi.org/10.1093/ps/79.7.1024

    Article  CAS  PubMed  Google Scholar 

  7. Gilbert S (1997) Early vertebrate development: mesoderm and endoderm. In: Gilbert S (ed) Developmental Biology, 5th edn. Sinauer Assoc Inc, Sunderland, pp 341–357

    Google Scholar 

  8. Carlton WW, Henderson W (1964) Skeletal lesions in experimental copper-deficiency in chickens. Avian Dis 8:48. https://doi.org/10.2307/1587818

    Article  Google Scholar 

  9. Starcher BC, Hill CH, Madaras JG (1980) Effect of zinc deficiency on bone collagenase and collagen turnover. J Nutr 110:2095–2102. https://doi.org/10.1093/jn/110.10.2095

    Article  CAS  PubMed  Google Scholar 

  10. Bremner I, Beattie JH (1995) Copper and zinc metabolism in health and disease: speciation and interactions. Proc Nutr Soc 54:489–499. https://doi.org/10.1079/PNS19950017

    Article  CAS  PubMed  Google Scholar 

  11. Scheideler SE (1991) Interaction of dietary calcium, manganese, and manganese source (Mn oxide or Mn methionine complex) on chick performance and manganese utilization. Biol Trace Elem Res 29:217–228. https://doi.org/10.1007/BF03032679

    Article  CAS  PubMed  Google Scholar 

  12. Reinwald S, Li Y, Moriguchi T et al (2004) Repletion with (n-3) fatty acids reverses bone structural deficits in (n-3)–deficient rats. J Nutr 134:388–394. https://doi.org/10.1093/jn/134.2.388

    Article  CAS  PubMed  Google Scholar 

  13. Korotkova M, Ohlsson C, Hanson LÅ, Strandvik B (2004) Dietary n -6: n -3 fatty acid ratio in the perinatal period affects bone parameters in adult female rats. Br J Nutr 92:643–648. https://doi.org/10.1079/BJN20041252

    Article  CAS  PubMed  Google Scholar 

  14. Ward WE, Kim S, Bruce WR (2003) A western-style diet reduces bone mass and biomechanical bone strength to a greater extent in male compared with female rats during development. Br J Nutr 90:589–595. https://doi.org/10.1079/BJN2003952

    Article  CAS  PubMed  Google Scholar 

  15. Watkins BA, Li Y, Allen KGD et al (2000) Dietary Ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J Nutr 130:2274–2284. https://doi.org/10.1093/jn/130.9.2274

    Article  CAS  PubMed  Google Scholar 

  16. Griel AE, Kris-Etherton PM, Hilpert KF et al (2007) An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr J 6:2. https://doi.org/10.1186/1475-2891-6-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corwin RL (2003) Effects of dietary fats on bone health in advanced age. Prostaglandins Leukot Essent Fat Acids 68:379–386. https://doi.org/10.1016/S0952-3278(03)00062-0

    Article  CAS  Google Scholar 

  18. Watkins BA, Li Y, Seifert MF (2001) Nutraceutical fatty acids as biochemical and molecular modulators of skeletal biology. J Am Coll Nutr 20:410S-416S. https://doi.org/10.1080/07315724.2001.10719177

    Article  CAS  PubMed  Google Scholar 

  19. Mollard RC, Kovacs HR, Fitzpatrick-Wong SC, Weiler HA (2005) Low levels of dietary arachidonic and docosahexaenoic acids ımprove bone mass in neonatal piglets, but higher levels provide no benefit. J Nutr 135:505–512. https://doi.org/10.1093/jn/135.3.505

    Article  CAS  PubMed  Google Scholar 

  20. Liu D, Veit H, Wilson J, Denbow D (2003) Long-term supplementation of various dietary lipids alters bone mineral content, mechanical properties and histological characteristics of Japanese quail. Poult Sci 82:831–839. https://doi.org/10.1093/ps/82.5.831

    Article  CAS  PubMed  Google Scholar 

  21. Atteh J, Leeson S (1984) Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks. Poult Sci 63:2252–2260. https://doi.org/10.3382/ps.0632252

    Article  CAS  PubMed  Google Scholar 

  22. Mccarthy TL, Centrella M, Raisz LG, Canalis E (1991) Prostaglandin E 2 stimulates ınsulin-like growth factor I synthesis in osteoblast-enriched cultures from fetal rat bone. Endocrinology 128:2895–2900. https://doi.org/10.1210/endo-128-6-2895

    Article  CAS  PubMed  Google Scholar 

  23. Raisz LG (2009) Bone cell biology: new approaches and unanswered questions. J Bone Miner Res 8:S457–S465. https://doi.org/10.1002/jbmr.5650081306

    Article  Google Scholar 

  24. Watkins BA, Shen C-L, Allen KGD, Seifert MF (1996) Dietary (n-3) and (n-6) polyunsaturates and acetylsalicylic acid alter ex vivo PGE2 biosynthesis, tissue IGF-I levels, and bone morphometry in chicks. J Bone Miner Res 11:1321–1332. https://doi.org/10.1002/jbmr.5650110917

    Article  CAS  PubMed  Google Scholar 

  25. Watkins BA, Li Y, Lippman HE, Seifert MF (2001) Biochemical and molecular actions of fatty acids in bone modeling. In: Hamazaki T, Okuyama H (eds) Fatty Acids and Lipids - New Findings. Karger Publishers, Basel, pp 126–140

  26. Watkins BA, Shen C-L, McMurtry JP et al (1997) Dietary lipids modulate bone prostaglandin E2 production, ınsulin-like growth factor-I concentration and formation rate in chicks. J Nutr 127:1084–1091. https://doi.org/10.1093/jn/127.6.1084

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Seifert MF, Ney DM et al (1999) Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J Bone Miner Res 14:1153–1162. https://doi.org/10.1359/jbmr.1999.14.7.1153

    Article  CAS  PubMed  Google Scholar 

  28. Liu D, Veit HP, Denbow DM (2004) Effects of long-term dietary lipids on mature bone mineral content, collagen, crosslinks, and prostaglandin E2 production in Japanese quail. Poult Sci 83:1876–1883. https://doi.org/10.1093/ps/83.11.1876

    Article  CAS  PubMed  Google Scholar 

  29. Burr DB (2004) Bone quality: understanding what matters. J Musculoskelet Neuronal Interact 4:184–186

    CAS  PubMed  Google Scholar 

  30. Sanderson JP, Binkley N, Roecker EB et al (1997) Influence of fat ıntake and caloric restriction on bone in aging male rats. J Gerontol A Biol Sci Med Sci 52A:B20–B25. https://doi.org/10.1093/gerona/52A.1.B20

    Article  Google Scholar 

  31. Calik A, Yalcin S, Kücükersan S et al (2019) Effects of calcium soaps of animal fats on performance, abdominal fat fatty acid composition, bone biomechanical properties, and tibia mineral concentration of broilers. Kafkas Univ Vet Fak Derg 25:61–70. https://doi.org/10.9775/kvfd.2018.20329

    Article  Google Scholar 

  32. Koksal A (2000) Inventory of hazelnut research, germplasm and references, 1st edn. F.A.O., Ankara

    Google Scholar 

  33. Cetingul I, Inal F (2009) The effects of hazelnut and sunflower oil used in the diets of layer hens and broilers on performance and fatty acid composition of animal products. Rev Méd Vét 160:197–203

    CAS  Google Scholar 

  34. Olenrewaju HA, Thaxton JP, Dozier WA et al (2006) A review of lighting programs for broiler production. Int J Poult Sci 5:301–308

    Article  Google Scholar 

  35. AOAC (1980) Official methods of analysis, 13th edn. Association Official Analytical Chemists, Washington, D.C

    Google Scholar 

  36. Paquot C (1979) Standard methods for the analysis of oils, fats and derivatives. Elsevier, Oxford

    Google Scholar 

  37. Gultepe EE, Uyarlar C, Bayram İ (2018) Supplementation of Cr methionine during dry period of dairy cows and ıts effect on some production and biochemical parameters during early lactation and on ımmunity of their offspring. Biol Trace Elem Res 186:143–153. https://doi.org/10.1007/s12011-018-1279-0

    Article  CAS  PubMed  Google Scholar 

  38. Hall LE, Shirley RB, Bakalli R et al (2003) Power of two methods for the estimation of bone ash of broilers. Poult Sci 82:414–418. https://doi.org/10.1093/ps/82.3.414

    Article  CAS  PubMed  Google Scholar 

  39. Peebles ED, Brake JD, Latour MA (1997) Broiler performance, yield, and bone characteristics as affected by starter diet fat level. J Appl Poult Res 6:325–330. https://doi.org/10.1093/japr/6.3.325

    Article  Google Scholar 

  40. Applegate TJ, Lilburn MS (2002) Growth of the femur and tibia of a commercial broiler line. Poult Sci 81:1289–1294

    Article  CAS  PubMed  Google Scholar 

  41. Pritchard A, Robison C, Nielsen BD (2020) Research note: bone ash from immature broilers correlates to bone mineral content calculated from quantitative computed tomography scans. Poult Sci 99:4162–4165. https://doi.org/10.1016/j.psj.2020.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li K-C, Zernicke RF, James Barnard R, Li AF-Y (1990) Effects of a high fat-sucrose diet on cortical bone morphology and biomechanics. Calcif Tissue Int 47:308–313. https://doi.org/10.1007/BF02555914

    Article  CAS  PubMed  Google Scholar 

  43. Zernicke R (1995) Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone 16:25–31. https://doi.org/10.1016/S8756-3282(00)80007-1

    Article  CAS  PubMed  Google Scholar 

  44. Wohl GR, Loehrke L, Watkins BA, Zernicke RF (1998) Effects of high-fat diet on mature bone mineral content, structure, and mechanical properties. Calcif Tissue Int 63:74–79. https://doi.org/10.1007/s002239900492

    Article  CAS  PubMed  Google Scholar 

  45. Atteh JO, Leeson S (1983) Effects of dietary fatty acids and calcium levels on performance and mineral metabolism of broiler chickens. Poult Sci 62:2412–2419. https://doi.org/10.3382/ps.0622412

    Article  CAS  PubMed  Google Scholar 

  46. Leeson S, Atteh JO (1995) Utilization of fats and fatty acids by turkey poults. Poult Sci 74:2003–2010. https://doi.org/10.3382/ps.0742003

    Article  CAS  PubMed  Google Scholar 

  47. Smith M, Soisuvan K, Miller L (2002) Evaluation of dietary calcium level and fat source on growth performance and mineral utilization of heat-distressed broilers. Int J Poult Sci 2:32–37. https://doi.org/10.3923/ijps.2003.32.37

    Article  Google Scholar 

  48. Güz BC, Molenaar R, de Jong IC et al (2019) Effects of dietary organic minerals, fish oil, and hydrolyzed collagen on growth performance and tibia characteristics of broiler chickens. Poult Sci 98:6552–6563

    Article  PubMed  PubMed Central  Google Scholar 

  49. Weiss LA, Barrett-Connor E, von Mühlen D (2005) Ratio of n–6 to n–3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 81:934–938. https://doi.org/10.1093/ajcn/81.4.934

    Article  CAS  PubMed  Google Scholar 

  50. Waldenstedt L (2006) Nutritional factors of importance for optimal leg health in broilers: a review. Anim Feed Sci Technol 126:291–307

    Article  Google Scholar 

  51. Abdulla NR, Loh TC, Akit H et al (2017) Effects of dietary oil sources, calcium and phosphorus levels on growth performance, carcass characteristics and bone quality of broiler chickens. J Appl Anim Res 45:423–429. https://doi.org/10.1080/09712119.2016.1206903

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Afyon Kocatepe University Scientific Research Projects Commission (Project No: 17.VF.06).

Author information

Authors and Affiliations

Authors

Contributions

ISC and FI made substantial contributions to the research design, nutritional experiments, obtaining the data, and analyzing the samples. EEG performed trace mineral analysis and data analysis (statistical model). ISC, FI, EEG, CU, and IB drafted the manuscript and revised it. Eventually, all authors contributed a critical review of the manuscript prior to submission.

Corresponding author

Correspondence to Eyup Eren Gultepe.

Ethics declarations

Ethics Approval

All experimental procedures were approved by the Local Animal Ethics Committee of the Afyon Kocatepe University, Afyonkarahisar, Turkey (Case No.49533702/94 Date: 30/05/2017).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetıngul, I.S., Inal, F., Gultepe, E.E. et al. The Effects of Different Dietary Oil Sources on Broiler Chicken Bone Mineralization. Biol Trace Elem Res 200, 2321–2328 (2022). https://doi.org/10.1007/s12011-021-02833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02833-9

Keywords

Navigation