Skip to main content

Advertisement

Log in

Effect of Titanium Dioxide and Silver Nanoparticles on Mitochondrial Dynamics in Mouse Testis Tissue

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was performed to investigate whether the toxicity of nanoparticles (Ag NPs or TiO2 NPs) affected mitochondrial dynamics (mitochondrial fusion and fission mechanisms) in testicular cells of mice. Animals were assigned into three groups (ten mice per group): control group (distilled water), TiO2 NP group (5 mg/kg per dose), and Ag NP group (5 mg/kg per dose). NPs were administered intravenously (via tail vein) to mice with 3-day intervals. To determine the possible toxic effect of NPs on mitochondrial dynamics, the expression levels of mitochondrial fission (Drp1)- and fusion (Mfn1, Mfn2, OPA1)-related genes were analyzed. The results showed that both Ag NPs and TiO2 NPs entered the testis via the blood–testis barier and accumulated in mouse testis tissue. Experiments showed that administration of Ag NPs neither alters testicular weight and testicular index nor causes significant toxic effect on sperm parameters. RT-PCR analysis demonstrated that Ag NP treatment did not disrupt mitochondrial dynamics in testicular cells. Conversely, administration of TiO2 NPs (anatase, < 25 nm) decreased the sperm motility and the percentages of sperms with swollen tail. Furthermore, RT-PCR and western blot analyses showed that TiO2 NPs disrupted mitochondrial dynamics by causing excess mitochondrial fission (excess expression of Drp1 gene and DRP1 protein). This is the first report on the toxicity of nanoparticles on mitochondrial dynamics (fusion and fission mechanisms) in testicular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cagalinec M, Safiulina D, Liiv M et al (2013) Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126:2187–2197

    CAS  PubMed  Google Scholar 

  2. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zorzano A, Liesa M, Sebastián D, Segalés J, Palacín M (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. In Seminars in cell & developmental biology. Academic Press, vol. 21, no. 6, pp. 566–574

  4. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev 8:870–879

    Article  CAS  Google Scholar 

  5. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  6. Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283:13501–13505

    Article  CAS  PubMed  Google Scholar 

  7. Grohm J, Kim SW, Mamrak U et al (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19:1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ke S, Zhou T, Yang P et al (2017) Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. Int J Nanomed 12:2531

    Article  CAS  Google Scholar 

  9. Jin CY, Zhu BS, Wang XF, Lu QH (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21:1871–1877

    Article  CAS  PubMed  Google Scholar 

  10. Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki K, Nihei Y, Takeda K (2008) The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol In Vitro 22:1825–1831

    Article  CAS  PubMed  Google Scholar 

  11. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobi 2:544–568

    Article  CAS  Google Scholar 

  12. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK (2007) Tropical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136

    Article  CAS  PubMed  Google Scholar 

  13. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Article  Google Scholar 

  14. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS (2016) Toxicity of nano-titanium dioxide (TiO 2-NP) through various routes of exposure: a review. Biol Trace Elem Res 172:1–36

    Article  CAS  PubMed  Google Scholar 

  17. Guo LL, Liu XH, Qin DX, Gao L, Zhang HM, Liu JY, Cui YG (2009) Effects of nanosized titanium dioxide on the reproductive system of male mice. Zhonghua Nan Ke Xue 15:517–522

    CAS  PubMed  Google Scholar 

  18. Gao G, Ze Y, Li B et al (2012) Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J Hazard Mater 243:19–27

    Article  CAS  PubMed  Google Scholar 

  19. Lu T, Ling C, Hu M et al (2020) Effect of nano-titanium dioxide on blood-testis barrier and MAPK signaling pathway in male mice. Biol Trace Elem Res 1–11

  20. Natarajan V, Wilson CL, Hayward SL, Kidambi S (2015) Titanium dioxide nanoparticles trigger loss of function and perturbation of mitochondrial dynamics in primary hepatocytes. PLoS One 10:e0134541

  21. Li F, Zhou J, Li Y, Sun K, Chen J (2019) Mitochondrial damage and Drp1 overexpression in rifampicin-and ısoniazid-induced liver ınjury cell model. JCTH 7:40

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Yan L, Zhang Y, Yang X (2019) The role of DRP1 in ropivacaine-induced mitochondrial dysfunction and neurotoxicity. Artif Cells Nanomed Biotechnol 47:1788–1796

    Article  CAS  PubMed  Google Scholar 

  23. Rezaei N, Chian RC (2005) Effects of essential and non-essential amino acids on in-vitro maturation, fertilization and development of immature bovine oocytes. Int J Reprod BioMed 3:36–41

    CAS  Google Scholar 

  24. Torabi F, Shafaroudi MM, Rezaei N (2017) Combined protective effect of zinc oxide nanoparticles and melatonin on cyclophosphamide-induced toxicity in testicular histology and sperm parameters in adult Wistar rats. Int J Reprod Biomed 15(7):403

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Somfai T, Bodo SZ, Nagy SZ, Gocza E, Ivancsics J, Kovacs A (2002) Simultaneous evaluation of viability and acrosome ıntegrity of mouse spermatozoa using light microscopy. Biotech Histochem 77:117–120

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  27. Ding H, Jiang N, Liu H et al (2010) Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. BBA-Gen Subjects 1800:250–256

    Article  CAS  Google Scholar 

  28. Gao G, Ze Y, Zhao X et al (2013) Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J Hazard Mater 258:133–143

    Article  PubMed  Google Scholar 

  29. Castellini C, Ruggeri S, Mattioli S, Bernardini G, Macchioni L, Moretti E, Collodel G (2014) Long-term effects of silver nanoparticles on reproductive activity of rabbit buck. Syst Biol Reprod Med 60:143–150

    Article  CAS  PubMed  Google Scholar 

  30. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS et al (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19:857–871

    Article  CAS  PubMed  Google Scholar 

  31. Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyñska M, Instanes C, Brunborg G, Gajowik A, Radzikowska J, Wojewódzka M, Kruszewski M (2012) Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214:251–258

    Article  CAS  PubMed  Google Scholar 

  32. Zou J, Feng H, Mannerström M, Heinonen T, Pyykkö I (2014) Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J Nanobiotechnol 12:52

    Article  Google Scholar 

  33. Mohamed El Mahdy M, Salah T, Sayed Aly H, Mohammed F, Shaalan M (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol 67:21–29

    Article  Google Scholar 

  34. Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY (2019) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomed 14:4723

    Article  CAS  Google Scholar 

  35. Hassanen EI, Ragab E (2021) In vivo and in vitro assessments of the antibacterial potential of chitosan-silver nanocomposite against methicillin-resistant Staphylococcus aureus–induced infection in rats. Biol Trace Elem Res 199:244–257

    Article  PubMed  Google Scholar 

  36. Hong F, Yu X, Wu N, Zhang YQ (2017) Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res 6:115–133

    Article  CAS  Google Scholar 

  37. Alaee S, Ilani M (2017) Effect of titanium dioxide nanoparticles on male and female reproductive systems. JAMSAT 3:3–8

    Google Scholar 

  38. Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L (2018) Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomed 13:8487

    Article  CAS  Google Scholar 

  39. Miura N, Ohtani K, Hasegawa T, Yoshioka H, Hwang GW (2019) Biphasic adverse effect of titanium nanoparticles on testicular function in mice. Sci Rep 9:1–8

    Article  Google Scholar 

  40. Kumar N, Singh AK (2015) Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci 8:191–196

    Article  PubMed  PubMed Central  Google Scholar 

  41. Serasinghe MN, Chipuk JE (2016) Mitochondrial fission in human diseases. Handb Exp Pharmacol 240:159–188

    Article  Google Scholar 

  42. Ren L, Chen X, Chen X, Li J, Cheng B, Xia J (2020) Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells. Front Cell Dev Biol 8:580070

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21:2538–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gawlowski T, Suarez J, Scott B et al (2012) Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-β-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 287:30024–30034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perdiz D, Lorin S, Leroy-Gori I, Poüs C (2017) Stress-induced hyperacetylation of microtubule enhances mitochondrial fission and modulates the phosphorylation of Drp1 at 616 Ser. Cell Signal 39:32–43

    Article  CAS  PubMed  Google Scholar 

  47. Zhao H, Chen L, Zhong G et al (2019) Titanium dioxide nanoparticles induce mitochondrial dynamic imbalance and damage in HT22 cells. J Nanomater 2019:1–16

  48. Ganguly G, Chakrabarti S, Chatterjee U, Saso L (2017) Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Dev Ther 11:797–810

    Article  CAS  Google Scholar 

  49. De Rosa M, Gambardella J, Shu J, Santulli G (2018) Dietary fat is a key determinant in balancing mitochondrial dynamics in heart failure: a novel mechanism underlying the obesity paradox. Cardiovasc Res 114:925–927

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dai W, Jiang L (2019) Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front Endocrinol 10:570

    Article  Google Scholar 

  51. Amartuvshin O, Lin CH, Hsu SC et al (2020) Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell 19:e13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazli Pinar Arslan.

Ethics declarations

All animal procedures were approved by the Animal Experiments Committee of Ataturk University (25 July 2014, Approval No: 2014/116).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, N.P., Keles, O.N. & Gonul-Baltaci, N. Effect of Titanium Dioxide and Silver Nanoparticles on Mitochondrial Dynamics in Mouse Testis Tissue. Biol Trace Elem Res 200, 1650–1658 (2022). https://doi.org/10.1007/s12011-021-02763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02763-6

Keywords

Navigation