Skip to main content
Log in

Multidimensional Scaling of the Mineral Nutrient Status and Health Risk Assessment of Commonly Consumed Fruity Vegetables Marketed in Kyrgyzstan

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Intensive production of fruits and vegetables causes heavy metal accumulation. Consumption of this kind of foodstuff is a growing concern of the modern world with the additional distress of the supply of enough foodstuffs. To contribute to this global purpose, this research aimed to find out the mineral nutrient and heavy metal concentrations of commonly consumed fruity vegetables in Kyrgyzstan. Totally, ten different fruity type vegetables were collected from five different large bazaars of Kyrgyzstan. From these, 20 samples, including washed/unwashed rinds of vegetables, were quantified in terms of their B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn contents by using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentrations of the fruity vegetables were found in the following range: B (1.392–25.816), Ca (92.814–4095.466), Cd (0.007–0.086), Cr (0.009–0.919), Cu (0.351–8.351), Fe (4.429–126.873), K (920.124–10,135.995), Mg (61.973–879.085), Mn (1.113–78.938), Na (36.132–266.475), Ni (0.039–1.215), Pb (0.081–2.906), and Zn (1.653–87.107) (mg kg−1). It was determined that red capia pepper was the vegetable having the highest daily nutritional value according to evaluation done in our study. Taking into account of the HI values, all of the vegetables analyzed were determined to be lower than the limit value of 1 that falls into acceptable limits in terms of being safe. Peppers demonstrated the highest variation in terms of the elemental content. The high Cr content rendered hot pepper risky for consumption by both genders regarding with CR, and in terms of CR, it has been observed that nickel contents being found in vegetables including tomatoes pose a moderate risk for consumption. Quite lower risk was detected in red/Brandy-wine tomatoes, eggplants, and cucumber for both genders. As most striking result in our study, the Brandy-wine type tomato was found to be healthiest (as well as safest) and nutritious vegetable looking from the viewpoint of consumption in Kyrgyzstan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  1. Ahmad K, Khan ZI, Ashfaq A, Akram NA, Ashraf M, Yasmeen S, Tufarelli V, Laudadio V, Fracchiolla M, Cazzato E (2016) Contamination and accumulation of heavy metals in brinjal (Solanum melongena L.) grown in a long-term wastewater-irrigated agricultural land of Sargodha, Pakistan. Fresen Environ Bull 25(7):2404–2410

    CAS  Google Scholar 

  2. Ai S, Liu B, Yang Y, Ding J, Yang W, Bai X, Naeem S, Zhang Y (2018) Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. Ecotox Environ Safe 153:204–214. https://doi.org/10.1016/j.ecoenv.2018.02.026

    Article  CAS  Google Scholar 

  3. Alam MA, Saleh M, Mohsin GM, Nadirah TA, Aslani F, Rahman MM, Roy SK, Juraimi AS, Alam MZ (2020) Evaluation of phenolics, capsaicinoids, antioxidant properties, and major macro-micro minerals of some hot and sweet peppers and ginger land-races of Malaysia. J Food Process Preserv 44(6):e14483. https://doi.org/10.1111/jfpp.14483

    Article  CAS  Google Scholar 

  4. Antoine JMR, Fung LAH, Grant CN (2017) Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol Rep 4:181–187. https://doi.org/10.1016/j.toxrep.2017.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arslan Topal EI, Topal M, Öbek E (2020) Assessment of heavy metal accumulations and health risk potentials in tomatoes grown in the discharge area of a municipal wastewater treatment plant. Int J Environ Health Res:1–13. https://doi.org/10.1080/09603123.2020.1762071

  6. Aslam W, Noor RS, Hussain F, Ameen M, Ullah S, Chen H (2020) Evaluating morphological growth, yield, and postharvest fruit quality of cucumber (Cucumis Sativus L.) grafted on cucurbitaceous rootstocks. Agriculture 10 (4):101

  7. Asins MJ, Raga MV, Torrent D, Roca D, Carbonell EA (2020) QTL and candidate gene analyses of rootstock-mediated tomato fruit yield and quality traits under low iron stress. Euphytica 216(4):63. https://doi.org/10.1007/s10681-020-02599-6

    Article  CAS  Google Scholar 

  8. Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23(1):S32–S44

    Article  CAS  Google Scholar 

  9. Barin JS, Pereira JSF, Mello PA, Knorr CL, Moraes DP, Mesko MF, Nóbrega JA, Korn MGA, Flores EMM (2012) Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta 94:308–314. https://doi.org/10.1016/j.talanta.2012.03.048

    Article  CAS  PubMed  Google Scholar 

  10. Blum WEH, Horak O, Mentler A, Puschenreiter M (2014) Trace elements. In: Sabljic A (ed) Environmental and ecological chemistry. Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO, Oxford, UK,

  11. Borges AR, François LL, Becker EM, Vale MGR, Welz B (2015) Method development for the determination of chromium and thallium in fertilizer samples using graphite furnace atomic absorption spectrometry and direct solid sample analysis. Microchem J 119:169–175

    Article  CAS  Google Scholar 

  12. Butnariu M, Butu A (2015) Chemical composition of vegetables and their products. Handbook of Food Chemistry:627–692

  13. Cabral-Pinto MMS, Inácio M, Neves O, Almeida AA, Pinto E, Oliveiros B, Ferreira da Silva EA (2020) Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Exposure and Health 12(4):629–640. https://doi.org/10.1007/s12403-019-00323-x

    Article  CAS  Google Scholar 

  14. Cao L, Zheng J, Tsukada H, Pan S, Wang Z, Tagami K, Uchida S (2016) Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS. Talanta 159:55–63. https://doi.org/10.1016/j.talanta.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  15. Can H, Ozyigit II, Can M, Hocaoglu-Ozyigit A, Yalcin IE (2021) Environment-based impairment in mineral nutrient status and heavy metal contents of commonly consumed leafy vegetables marketed in Kyrgyzstan: a case study for health risk assessment. Biol Trace Elem Res 199(3):1123–1144. https://doi.org/10.1007/s12011-020-02208-6

    Article  CAS  PubMed  Google Scholar 

  16. Chávez-Servia JL, Vera-Guzmán AM, Linares-Menéndez LR, Carrillo-Rodríguez JC, Aquino-Bolaños EN (2018) Agromorphological traits and mineral content in tomato accessions from El Salvador. Central America Agronomy 8(3):32

    Article  Google Scholar 

  17. Choi M-K, Jun Y-S (2008) Analysis of boron content in frequently consumed foods in Korea. Biol Trace Elem Res 126(1):13–26. https://doi.org/10.1007/s12011-008-8179-7

    Article  CAS  PubMed  Google Scholar 

  18. Demir AD, Sahin U (2017) Effects of different irrigation practices using treated wastewater on tomato yields, quality, water productivity, and soil and fruit mineral contents. Environ Sci Pollut R 24(32):24856–24879. https://doi.org/10.1007/s11356-017-0139-3

    Article  CAS  Google Scholar 

  19. Ding Z, Li Y, Sun Q, Zhang H (2018) Trace elements in soils and selected agricultural plants in the Tongling Mining Area of China. Int J Environ Res Public Health 15(2):202

    Article  Google Scholar 

  20. Dorne JL, Kass GE, Bordajandi LR, Amzal B, Bertelsen U, Castoldi AF, Heppner C, Eskola M, Fabiansson S, Ferrari P, Scaravelli E, Dogliotti E, Fuerst P, Boobis AR, Verger P (2011) Human risk assessment of heavy metals: principles and applications. Met Ions Life Sci 8:27–60

    CAS  PubMed  Google Scholar 

  21. Dursun A, Ekinci M, Dönmez MF (2010) Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.). Pak J Bot 42(5):3349–3356

    CAS  Google Scholar 

  22. Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic-Amsterdam 234:431–444. https://doi.org/10.1016/j.scienta.2017.12.039

    Article  CAS  Google Scholar 

  23. Eid EM, Alrumman SA, El-Bebany AF, Hesham AEL, Taher MA, Fawy KF (2017) The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation growth and biomass of cucumbers (Cucumis sativus L.). Environ Sci Pollut 24(19):16371–16382. https://doi.org/10.1007/s11356-017-9289-6

    Article  CAS  Google Scholar 

  24. Eissa MA (2019) Effect of cow manure biochar on heavy metals uptake and translocation by zucchini (Cucurbita pepo L). Arab J Geosci 12(2):48. https://doi.org/10.1007/s12517-018-4191-1

    Article  CAS  Google Scholar 

  25. Elbadrawy E, Sello A (2016) Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab J Chem 9:S1010–S1018. https://doi.org/10.1016/j.arabjc.2011.11.011

    Article  CAS  Google Scholar 

  26. Eliku T, Leta S (2016) Assessment of heavy metal contamination in vegetables grown using paper mill wastewater in Wonji Gefersa. Ethiopia B Environ Contam Tox 97(5):714–720. https://doi.org/10.1007/s00128-016-1915-3

    Article  CAS  Google Scholar 

  27. EPA U (2019) United States Environmental Protection Agency [WWW Document]. URL https://www.epa.gov/risk

  28. EPA US (1999) Screening level ecological risk assessment protocol for hazardous waste combustion facilities, appendix E: toxicity reference values.

  29. Etem O, MUTLU S, AKSOY A, İLHAN V, (2016) Effect of irrigation water on accumulation of heavy metal and mineral element in some vegetables. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6(2):49–58

    Google Scholar 

  30. FAO (2020) Fruit and vegetables – your dietary essentials. The International Year of Fruits and Vegetables (2021) background paper. Food Agric Org Rome. https://doi.org/10.4060/cb2395en

    Article  Google Scholar 

  31. Galal TM (2016) Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ Monit Assess 188(7):434. https://doi.org/10.1007/s10661-016-5448-3

    Article  CAS  PubMed  Google Scholar 

  32. Gebeyehu HR, Bayissa LD (2020) Levels of heavy metals in soil and vegetables and associated health risks in Mojo area. Ethiopia Plos One 15(1):e0227883. https://doi.org/10.1371/journal.pone.0227883

    Article  CAS  PubMed  Google Scholar 

  33. Gonçalves DA, de Souza ID, Rosa ACG, Melo ESP, Goncalves A-MB, de Oliveira LCS, do Nascimento VA, (2019) Multi-wavelength calibration: determination of trace toxic elements in medicine plants by ICP OES. Microchem J 146:381–386. https://doi.org/10.1016/j.microc.2019.01.021

    Article  CAS  Google Scholar 

  34. Guerra F, Trevizam AR, Muraoka T, Marcante NC, Canniatti-Brazaca SG (2012) Heavy metals in vegetables and potential risk for human health. Scientia Agricola 69:54–60

    Article  CAS  Google Scholar 

  35. Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Ali A, Khan MAU, Khan TA (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut R 26(13):12673–12688. https://doi.org/10.1007/s11356-019-04892-x

    Article  CAS  Google Scholar 

  36. Hashash MM, El-Sayed MM, Abdel-Hady AA, Hady HA, Morsi EA (2017) Nutritional potential, mineral composition and antioxidant activity squash (Cucurbita pepo L.) fruits grown in Egypt. Inflammation 9(10):11–12

    Google Scholar 

  37. Heshmati A, Mehri F, Karami-Momtaz J, KHANEGHAH AM, (2019) Concentration and risk assessment of potentially toxic elements, lead and cadmium, in vegetables and cereals consumed in Western Iran. J Food Prot 83(1):101–107. https://doi.org/10.4315/0362-028x.Jfp-19-312

    Article  Google Scholar 

  38. Hou Q, Yang Z, Ji J, Yu T, Chen G, Li J, Xia X, Zhang M, Yuan X (2014) Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China. J Geochem Explor 139:68–84

    Article  CAS  Google Scholar 

  39. Huang B, Shi X, Yu D, Öborn I, Blombäck K, Pagella TF, Wang H, Sun W, Sinclair FL (2006) Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China. Agr Ecosyst Environ 112(4):391–402

    Article  Google Scholar 

  40. Huang Y, Wang L, Wang W, Li T, He Z, Yang X (2019) Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci Total Environ 651:3034–3042

    Article  CAS  Google Scholar 

  41. Hocaoglu-Ozyigit A, Genc BN (2020) Cadmium in plants, humans and the environment. Frontiers in Life Sciences and Related Technologies 1(1):12–21

    Google Scholar 

  42. Hu W, Huang B, Shi X, Chen W, Zhao Y, Jiao W (2013) Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotox Environ Safe 98:303–309

    Article  CAS  Google Scholar 

  43. Isherwood K (2011) Mineral fertilizer use and the environment. Paris, France: International Fertilizer Industry Association and United Nations Environment Programme (revised Feb 2000).

  44. Izah SC, Aigberua AO (2020) Microbial and heavy metal hazard analysis of edible tomatoes (Lycopersicon esculentum) in Port Harcourt, Nigeria. Toxicol Environ Health Sci https://doi.org/10.1007/s13530-020-00060-8

  45. Jalali M, Karimi Mojahed J (2020) Assessment of the health risks of heavy metals in soils and vegetables from greenhouse production systems in Iran. Int J Phytoremediat 22(8):834–848. https://doi.org/10.1080/15226514.2020.1715917

    Article  CAS  Google Scholar 

  46. Jarosz Z (2013) The effect of silicon application and type of substrate on yield and chemical composition of leaves and fruit of cucumber. J Elementol 18 (3)

  47. Kabata-Pendias A, Pendias H (2011) Trace elements in soils and plants. 4th Edition edn. CRC Press. https://doi.org/10.1201/b10158

  48. Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169(1):101–123. https://doi.org/10.1007/s11270-006-2027-1

    Article  CAS  Google Scholar 

  49. Khan AA, Sajid M, Rab A, Amin Nu, Iqbal A, Shah F, Islam B, Ali F, Ali W (2017) Effect of mixture of nitrogen from poultry manure and urea on mineral profile of tomato grown in KPK-Pakistan. Commun Soil Sci Plant Anal 48(12):1486–1493. https://doi.org/10.1080/00103624.2017.1374395

    Article  CAS  Google Scholar 

  50. Khan MA, Ding X, Khan S, Brusseau ML, Khan A, Nawab J (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810–817. https://doi.org/10.1016/j.scitotenv.2018.04.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khan MU, Malik RN, Muhammad S (2013) Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 93(10):2230–2238. https://doi.org/10.1016/j.chemosphere.2013.07.067

    Article  CAS  PubMed  Google Scholar 

  52. Khattak K, Rahman T (2017) Analysis of vegetable’s peels as a natural source of vitamins and minerals. Int Food Res J 24(1):292

    CAS  Google Scholar 

  53. Khezerlou A, Dehghan P, Moosavy M-H, Kochakkhani H (2020) Assessment of heavy metal contamination and the probabilistic risk via salad vegetable consumption in Tabriz, Iran. Biological trace element research. https://doi.org/10.1007/s12011-020-02365-8

  54. Khillare P, Jyethi DS, Sarkar S (2012) Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food Chem Toxicol 50(5):1642–1652

    Article  CAS  Google Scholar 

  55. Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae—a model for linking genomics with biodiversity. International Journal of Genomics 5(3):285–291

    CAS  Google Scholar 

  56. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27. https://doi.org/10.1007/BF02289565

    Article  Google Scholar 

  57. Kuru R, Yilmaz S, Tasli PN, Yarat A, Sahin F (2019) Boron content of some foods consumed in Istanbul. Turkey Biological trace element research 187(1):1–8. https://doi.org/10.1007/s12011-018-1319-9

    Article  CAS  PubMed  Google Scholar 

  58. Lorenzo-Seva U, Berge J (2006) Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology 2:57–64. https://doi.org/10.1027/1614-2241.2.2.57

    Article  Google Scholar 

  59. Ługowska M (2019) Effects of bio-stimulants on the yield of cucumber fruits and on nutrient content. Afr J Agr Res 14(35):2112–2118

    Article  Google Scholar 

  60. Lu M, Liu D, Shi Z, Gao X, Liang Y, Yao Z, Zhang W, Wang X, Chen X (2020) Nutritional quality and health risk of pepper fruit as affected by magnesium fertilization. J Sci Food Agr n/a (n/a). https://doi.org/10.1002/jsfa.10670

  61. Manzoor M, Anwar F, Saari N, Ashraf M (2012) Variations of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars from Pakistan. Molecules 17(1):390–407

    Article  CAS  Google Scholar 

  62. Martínez-Valdivieso D, Font R, Gómez P, Blanco-Díaz T, Del Río-Celestino M (2014) Determining the mineral composition in Cucurbita pepo fruit using near infrared reflectance spectroscopy. J Sci Food Agr 94(15):3171–3180. https://doi.org/10.1002/jsfa.6667

    Article  CAS  Google Scholar 

  63. Martorell I, Perelló G, Martí-Cid R, Llobet JM, Castell V, Domingo JL (2011) Human exposure to arsenic, cadmium, mercury, and lead from foods in Catalonia, Spain: temporal trend. Biol Trace Elem Res 142(3):309–322. https://doi.org/10.1007/s12011-010-8787-x

    Article  CAS  PubMed  Google Scholar 

  64. Matraszek R, Szymańska M, Chomczyńska M, Soldatov VS (2008) Productivity and chemical composition of tomato and cucumber plants growing in natural soils fertilized with Biona-312. Commun Soil Sci Plant Anal 39(15–16):2343–2358. https://doi.org/10.1080/00103620802292533

    Article  CAS  Google Scholar 

  65. Mills HA, Jones Jr JB (1996) Plant analysis handbook II: a practical sampling, preparation, analysis, and interpretation guide. vol 581.13 M657.

  66. Osma E, Ozyigit II, Leblebici Z, Demir G, Serin M (2012) Determination of heavy metal concentrations in tomato (Lycopersicon esculentum Miller) grown in different station types. Rom Biotech Lett 17(1):6963

    Google Scholar 

  67. Ozyigit II, Uras ME, Yalcin IE, Severoglu Z, Demir G, Borkoev B, Salieva K, Yucel S, Erturk U, Solak AO (2019) Heavy metal levels and mineral nutrient status of natural walnut (Juglans regia L.) populations in Kyrgyzstan: nutritional values of kernels. Biol Trace Elem Res 189(1):277–290. https://doi.org/10.1007/s12011-018-1461-4

    Article  CAS  PubMed  Google Scholar 

  68. Pajević S, Arsenov D, Nikolić N, Borišev M, Orčić D, Župunski M, Mimica-Dukić N (2018) Heavy metal accumulation in vegetable species and health risk assessment in Serbia. Environ Monit Assess 190(8):459. https://doi.org/10.1007/s10661-018-6743-y

    Article  CAS  PubMed  Google Scholar 

  69. Pan X-D, Wu P-G, Jiang X-G (2016) Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang. China Sci Rep-Uk 6(1):20317. https://doi.org/10.1038/srep20317

    Article  CAS  Google Scholar 

  70. Pipoyan D, Beglaryan M, Stepanyan S, Merendino N (2019) Dietary exposure assessment of potentially toxic trace elements in fruits and vegetables sold in town of Kapan. Armenia Biological trace element research 190(1):234–241. https://doi.org/10.1007/s12011-018-1522-8

    Article  CAS  PubMed  Google Scholar 

  71. Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agr Ecosyst Environ 109(3):310–322. https://doi.org/10.1016/j.agee.2005.02.025

    Article  CAS  Google Scholar 

  72. Real MIH, Azam HM, Majed N (2017) Consumption of heavy metal contaminated foods and associated risks in Bangladesh. Environ Monit Assess 189(12):651. https://doi.org/10.1007/s10661-017-6362-z

    Article  CAS  PubMed  Google Scholar 

  73. Rolnik A, Olas B (2020) Vegetables from the Cucurbitaceae family and their products: positive effect on human health. Nutrition 78:110788. https://doi.org/10.1016/j.nut.2020.110788

    Article  CAS  PubMed  Google Scholar 

  74. Rusan MJM, Hinnawi S, Rousan L (2007) Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 215(1–3):143–152

    Article  Google Scholar 

  75. Schmautz Z, Loeu F, Liebisch F, Graber A, Mathis A, Griessler Bulc T, Junge R (2016) Tomato productivity and quality in aquaponics: comparison of three hydroponic methods. Water 8(11):533

    Article  Google Scholar 

  76. Severoglu Z, Ozyigit II, Dogan I, Kurmanbekova G, Demir G, Yalcin IE, Kari GK (2015) The usability of Juniperus virginiana L. as a biomonitor of heavy metal pollution in Bishkek City, Kyrgyzstan. Biotechnol Biotechnol Equip 29(6):1104–1112. https://doi.org/10.1080/13102818.2015.1072478

    Article  CAS  Google Scholar 

  77. Shaheen N, Irfan NM, Khan IN, Islam S, Islam MS, Ahmed MK (2016) Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere 152:431–438. https://doi.org/10.1016/j.chemosphere.2016.02.060

    Article  CAS  PubMed  Google Scholar 

  78. Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. In: Crop production and global environmental issues. Springer, pp 1–25

  79. Shao D, Zhan Y, Zhou W, Zhu L (2016) Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environ Pollut 219:329–336. https://doi.org/10.1016/j.envpol.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  80. Singh P, Tiwari D, Mishra M, Kumar D (2019) Molecular mechanisms of heavy metal toxicity in cancer progression. In: Kesari KK (ed) Networking of mutagens in environmental toxicology. Springer International Publishing, Cham, pp 49–79. https://doi.org/10.1007/978-3-319-96511-6_3

  81. Sridhara Chary N, Kamala CT, Samuel Suman Raj D (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotox Environ Safe 69(3):513–524. https://doi.org/10.1016/j.ecoenv.2007.04.013

    Article  CAS  Google Scholar 

  82. Stafilov T, Šajn R, Boev B, Cvetković J, Mukaetov D, Andreevski M, Lepitkova S (2010) Distribution of some elements in surface soil over the Kavadarci region. Republ Macedonia Environ Earth Sci 61(7):1515–1530. https://doi.org/10.1007/s12665-010-0467-9

    Article  CAS  Google Scholar 

  83. Taher D, Solberg SØ, Prohens J, Chou Y-y, Rakha M, Wu T-h (2017) World vegetable center eggplant collection: origin, composition, seed dissemination and utilization in breeding. Front Plant Sci 8 (1484). https://doi.org/10.3389/fpls.2017.01484

  84. Taghipour M, Jalali M (2020) Effects of some industrial and organic wastes application on growth and heavy metal uptake by tomato (Lycopersicum esculentum) grown in a greenhouse condition. Environ Sci Pollut R 27(5):5353–5366. https://doi.org/10.1007/s11356-019-07017-6

    Article  CAS  Google Scholar 

  85. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology: Volume 3: Environmental Toxicology. Springer Basel, Basel, pp 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  86. Tomlekova NB, White PJ, Thompson JA, Penchev EA, Nielen S (2017) Mutation increasing β-carotene concentrations does not adversely affect concentrations of essential mineral elements in pepper fruit. PLoS ONE 12(2):e0172180. https://doi.org/10.1371/journal.pone.0172180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. USEPA (1992) Guidelines for exposure assessment. Washington

  88. USEPA (2020) Risk based screening table-generic, summary table. 7th November 2020

  89. Vallverdú-Queralt A, Jáuregui O, Di Lecce G, Andrés-Lacueva C, Lamuela-Raventós RM (2011) Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC–ESI-QTOF). Food Chem 129(3):877–883

    Article  Google Scholar 

  90. Wang Y, Su Y, Lu S (2019) Cd accumulation and transfer in pepper (Capsicum annuum L.) grown in typical soils of China pot experiments. Environ Sci Pollut 26(36):36558–36567. https://doi.org/10.1007/s11356-019-06716-4

    Article  CAS  Google Scholar 

  91. Wiseman CL, Zereini F, Püttmann W (2015) Metal and metalloid accumulation in cultivated urban soils: a medium-term study of trends in Toronto, Canada. Sci Total Environ 538:564–572

    Article  CAS  Google Scholar 

  92. World Health O (2002) The World health report : 2002: reducing the risks, promoting healthy life. World Health Organization, Geneva

    Google Scholar 

  93. Wu W, Wu P, Yang F, Sun D-l, Zhang D-X, Zhou Y-K (2018) Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci Total Environ 630:53–61. https://doi.org/10.1016/j.scitotenv.2018.02.183

    Article  CAS  PubMed  Google Scholar 

  94. Zhang H, Huang B, Dong L, Hu W, Akhtar MS, Qu M (2017) Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotox Environ Safe 137:233–239. https://doi.org/10.1016/j.ecoenv.2016.12.010

    Article  CAS  Google Scholar 

  95. Zhang Z, Takane Y (2010) Statistics: multidimensional scaling. International encyclopedia of education:304–311

  96. Zolfaghari G, Akhgari Sang Atash Z, Sazgar A (2018) Baseline heavy metals in plant species from some industrial and rural areas: Carcinogenic and non-carcinogenic risk assessment. MethodsX 5:43–60. https://doi.org/10.1016/j.mex.2018.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zofkova I, Davis M, Blahos J (2017) Trace elements have beneficial as well as detrimental effects on bone homeostasis. Physiol Res 66(3):391–402. https://doi.org/10.33549/physiolres.933454

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hasan Can or Ibrahim Ilker Ozyigit.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human and animal participants performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (78.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, H., Ozyigit, I.I., Can, M. et al. Multidimensional Scaling of the Mineral Nutrient Status and Health Risk Assessment of Commonly Consumed Fruity Vegetables Marketed in Kyrgyzstan. Biol Trace Elem Res 200, 1902–1916 (2022). https://doi.org/10.1007/s12011-021-02759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02759-2

Keywords

Navigation