Skip to main content

Advertisement

Log in

Trace Elemental Analysis of the Exoskeleton, Leg Muscle, and Gut of Three Hadal Amphipods

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hadal trenches are the deepest areas worldwide. Amphipods are considered a key factor in hadal ecosystems because of their important impacts on the hadal environment. Amphipods have benthic habits, and therefore, serve as good metal biomonitors. However, little is known about the hadal amphipod metal accumulations. In the present study, Alicella gigantea, Hirondellea gigas, and Scopelocheirus schellenbergi were sampled from the New Britain Trench (8824m, 7.02S 149.16E), Mariana Trench (10,839m, 11.38N 142.42E), and Marceau Trench (6690m, 1.42N 148.74E) in the West Pacific Ocean, respectively. The elemental concentrations of the three hadal amphipods were subsequently investigated. Nine trace elements (V, Cr, Mn, Co, Ni, Se, Mo, Ag, and Cd) of three tissues (exoskeleton, leg muscle, and gut) of the hadal amphipods were detected by using inductively coupled plasma mass spectrometry (ICP-MS) method. The concentrations of Cr, Cd, and Mn were comparably higher among those nine examined elements. The greatest accumulations of the elements Cr, Ag, and V in the exoskeleton and leg muscle were observed in H. gigas, and elements Mn, Co, and Se showed the highest accumulations in the gut in H. gigas among the three hadal amphipods. In addition, comparisons of the leg muscle trace element accumulation between the hadal amphipods and non-abyssal and shallow water decapoda and amphipoda species showed that the hadal amphipods possessed comparably higher concentrations of the trace elements Cd, Co, Mo, Ag, and V. This finding suggested a bottom–up effect of food availability and indicated the effects of human activities within the hadal environments. This study reveals the trace element bio-accumulation of three hadal amphipods, and suggests that deep-sea amphipods are potential indicator species for trace element bioavailability in the deep-sea environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Xu W, Gao YH, Gong LF, Li M, Pang KL, Luo ZH (2019) Fungal diversity in the deep-sea hadal sediments of the Yap Trench by cultivation and high throughput sequencing methods based on ITS rRNA gene. Deep-Sea Res I Oceanogr Res Pap 145:125–136

    Article  CAS  Google Scholar 

  2. Ritchie H, Janamieson AJ, Piertney SB (2015) Phylogenetic relationships among hadal amphipods of the Superfamily Lysianassoidea: implications for taxonomy and biogeography. Deep-Sea Res I Oceanogr Res Pap 105:119–131

    Article  CAS  Google Scholar 

  3. Chan J, Pan B, Geng D, Zhang Q, Zhang S, Guo J, Xu Q (2020) Genetic diversity and population structure analysis of three deep-sea amphipod species from geographically isolated hadal trenches in the Pacific Ocean. Biochem Genet 58(1):157–170

    Article  CAS  PubMed  Google Scholar 

  4. Liu R, Wang L, Wei Y, Fang J (2018) The hadal biosphere: Recent insights and new directions. Deep-Sea Res II Top Stud Oceanogr 155:11–18

    Article  Google Scholar 

  5. Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG (2010) Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol 25(3):190–197

    Article  PubMed  Google Scholar 

  6. Bao R, Strasser M, McNichol AP, Haghipour N, McIntyre C, Wefer G, Eglinton TI (2018) Tectonically-triggered sediment and carbon export to the Hadal zone. Nat Commun 9:121

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Y et al (2018) Characteristics of the copper, zinc superoxide dismutase of a hadal sea cucumber (Paelopatides sp.) from the Mariana Trench. Mar Drugs 16(5)

  8. Vinogradova NG (1997) Zoogeography of the abyssal and hadal zones. Adv Mar Biol 32:325–387

    Article  Google Scholar 

  9. Chen J, Z.Q.F, Li J et al (2017) Research on the application of the Hadal Lander Technology in the Mariana Trench. J Ocean Technol 36(1):63–69

    Google Scholar 

  10. Wang K, Shen Y, Yang Y, Gan X, Liu G, Hu K, Li Y, Gao Z, Zhu L, Yan G, He L, Shan X, Yang L, Lu S, Zeng H, Pan X, Liu C, Yuan Y, Feng C, Xu W, Zhu C, Xiao W, Dong Y, Wang W, Qiu Q, He S (2019) Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat Ecol Evol 3(5):823–833

    Article  PubMed  Google Scholar 

  11. Havermans C et al (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus Reveal a diverse abyss and a bipolar species. PLoS One 8(9)

  12. Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  PubMed  Google Scholar 

  13. Marsden ID, Rainbow PS, Smith BD (2003) Trace metal concentrations in two New Zealand talitrid amphipods: effects of gender and reproductive state and implications for biomonitoring. J Exp Mar Biol Ecol 290:93–113

    Article  CAS  Google Scholar 

  14. Blankenship LE, Yayanos AA, Cadien DB, Levin LA (2006) Vertical zonation patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec Trenches. Deep-Sea Res I Oceanogr Res Pap 53(1):48–61

    Article  Google Scholar 

  15. Fujii T, Kilgallen NM, Rowden AA, Jamieson AJ (2013) Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches. Mar Ecol Prog Ser 492:125–138

    Article  Google Scholar 

  16. Li J-Y et al (2019) Characterization of the mitochondrial genome of an ancient amphipod Halice sp. MT-2017 (Pardaliscidae) from 10,908 m in the Mariana Trench. Sci Rep:9

  17. Jamieson AJ, Lacey NC, Lörz AN, Rowden AA, Piertney SB (2013) The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean. Deep-Sea Res II Top Stud Oceanogr 92:107–113

    Article  CAS  Google Scholar 

  18. Li J-Y et al (2019) The complete mitochondrial genome of the largest amphipod, Alicella gigantea: Insight into its phylogenetic relationships and deep sea adaptive characters. Int J Biol Macromol 141:570–577

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi H et al (2012) The Hadal amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS One 7(8)

  20. Lacey NC, Mayor DJ, Linley TD, Jamieson AJ (2018) Population structure of the hadal amphipod Bathycallisoma (Scopelocheirus) schellenbergi in the Kermadec Trench and New Hebrides Trench, SW Pacific. Deep-Sea Res II Top Stud Oceanogr 155:50–60

    Article  Google Scholar 

  21. Zhang W et al (2019) Gut Microbial divergence between two populations of the hadal amphipod Hirondellea gigas. Appl Environ Microbiol:85(1)

  22. Garcia-Cegarra AM et al (2020) Concentration of trace elements in long-finned pilot whales stranded in northern Patagonia, Chile. Mar Pollut Bull 151

  23. Luo Lt WH, Yang L et al (2013) Content determination and correlation analysis of trace elements in the body of the grass carp in Tianshui Lake. Chin J Spectrosc Lab 4:1796–1800

    Google Scholar 

  24. Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192

    Article  CAS  Google Scholar 

  25. Gallo ND, James Cameron, Kevin Hardy, Patricia Fryer, Douglas H. Bartlett, Lisa A. Levin (2015) Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: influence of productivity and depth on epibenthic and scavenging communities. Deep-Sea Res I Oceanogr Res Pap 99:119–133

    Article  Google Scholar 

  26. Lacey NC, Rowden AA, Clark MR, Kilgallen NM, Linley T, Mayor DJ, Jamieson AJ (2016) Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific Trenches. Deep-Sea Res I Oceanogr Res Pap 111:121–137

    Article  Google Scholar 

  27. van Haren H, Berndt C, Klaucke I (2017) Ocean mixing in deep-sea trenches: new insights from the Challenger Deep, Mariana Trench. Deep-Sea Res I Oceanogr Res Pap 129:1–9

    Article  Google Scholar 

  28. Jamieson AJ, Fujii T (2011) Trench Connection. Biol Lett 7(5):641–643

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jamieson AJ, Stewart HA (2021) Hadal zones of the Northwest Pacific Ocean. Prog Oceanogr 190:102477

    Article  Google Scholar 

  30. Cui J, Yu Z, Mi M, He L, Sha Z, Yao P, Fang J, Sun W (2020) Occurrence of halogenated organic pollutants in hadal trenches of the Western Pacific Ocean. Environ Sci Technol 54(24):15821–15828

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Han C, Dong S, Boyd CE (2019) Use of elemental profiling and isotopic signatures to differentiate Pacific white shrimp (Litopenaeus vannamei) from freshwater and seawater culture areas. Food Control 95:249–256

    Article  CAS  Google Scholar 

  32. Silva E, Viana ZCV, Onofre CRE, Korn MGA, Santos VLCS (2016) Distribution of trace elements in tissues of shrimp species Litopenaeus vannamei (Boone, 1931) from Bahia, Brazil. Braz J Biol 76(1):194–204

    Article  CAS  PubMed  Google Scholar 

  33. Lipy EP, Hakim M, Mohanta LC, Islam D, Lyzu C, Roy DC, Jahan I, Akhter S, Raknuzzaman M, Abu Sayed M (2021) Assessment of heavy metal concentration in water, sediment and common fish species of Dhaleshwari River in Bangladesh and their health implications. Biol Trace Elem Res

  34. Ullah AKMA, Maksud MA, Khan SR, Lutfa LN, Quraishi SB (2017) Development and validation of a GF-AAS method and its application for the trace level determination of Pb, Cd, and Cr in fish feed samples commonly used in the hatcheries of Bangladesh. J Anal Sci Technol 8

  35. Adams WJ et al (2015) Long-term monitoring of arsenic, copper, selenium, and other elements in Great Salt Lake (Utah, USA) surface water, brine shrimp, and brine flies. Environ Monit Assess 187(3)

  36. Havermans C, Smetacek V (2018) Bottom-up and top-down triggers of diversification: a new look at the evolutionary ecology of scavenging amphipods in the deep sea. Prog Oceanogr 164:37–51

    Article  Google Scholar 

  37. Hupalo K et al (2019) Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin. Mol Phylogenet Evol 132:53–66

    Article  CAS  PubMed  Google Scholar 

  38. Fairey R, Long ER, Roberts CA, Anderson BS, Phillips BM, Hunt JW, Puckett HR, Wilson CJ (2001) An evaluation of methods for calculating mean sediment quality guideline quotients as indicators of contamination and acute toxicity to amphipods by chemical mixtures. Environ Toxicol Chem 20(10):2276–2286

    Article  CAS  PubMed  Google Scholar 

  39. Yazdkhasti F, Abtahi H, Mozafarinia K (2016) Serum iron, copper, zinc, chromium, manganese levels in idiopathic tinnitus patients in comparison with healthy individuals. Trace Elem Electrolytes 33(2):59–63

    Article  CAS  Google Scholar 

  40. Khodavirdipour A, Haddadi F, Keshavarzi S (2020) Chromium supplementation; negotiation with diabetes mellitus, hyperlipidemia and depression. J Diabetes Metab Disord 19(1):585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan KU, Zuberi A, Fernandes JBK, Ullah I, Sarwar H (2017) An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiol Biochem 43(6):1689–1705

    Article  CAS  PubMed  Google Scholar 

  42. Abd El-Kader MF et al (2020) Selenium nanoparticles act potentially on the growth performance, hemato-biochemical indices, antioxidative, and immune-related genes of European Seabass (Dicentrarchus labrax). Biol Trace Elem Res

  43. Yang XG et al (2003) Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord Chem Rev 237(1-2):103–111

    Article  CAS  Google Scholar 

  44. He Z, Han S, Zhu H, Hu X, Li X, Hou C, Wu C, Xie Q, Li N, du X, Ni J, Liu Q (2020) The protective effect of Vanadium on cognitive impairment and the neuropathology of Alzheimer's disease in APPSwe/PS1dE9 mice. Front Mol Neurosci 13

  45. Nghuyen Phuc Cam T et al (2008) Bioaccumulation and distribution of trace elements in tissues of giant river prawn Macrobrachium rosenbergii (Decapoda: Palaemonidae) from South Vietnam. Fish Sci 74(1):109–119

    Article  Google Scholar 

  46. Pourang N, Dennis JH (2005) Distribution of trace elements in tissues of two shrimp species from the Persian Gulf and roles of metallothionein in their redistribution. Environ Int 31(3):325–341

    Article  CAS  PubMed  Google Scholar 

  47. Kaya G, Turkoglu S (2017) Bioaccumulation of heavy metals in various tissues of some fish species and green tiger shrimp (Penaeus semisulcatus) from A degrees skenderun Bay, Turkey, and risk assessment for human health. Biol Trace Elem Res 180(2):314–326

    Article  CAS  PubMed  Google Scholar 

  48. Olgunoglu MP (2015) Heavy metal contents in muscle tissues of three deep-seawater Mediterranean shrimp species (Plesionika martia, Plesionika edwardsii, Aristeus antennatus). Pol J Environ Stud 24(6):2553–2557

    Article  CAS  Google Scholar 

  49. Tu NPC, Ha NN, Ikemoto T, Tuyen BC, Tanabe S, Takeuchi I (2008) Regional variations in trace element concentrations in tissues of black tiger shrimp Penaeus monodon (Decapoda: Penaeidae) from South Vietnam. Mar Pollut Bull 57(6-12):858–866

    Article  PubMed  Google Scholar 

  50. PaezOsuna F, TronMayen L (1996) Concentration and distribution of heavy metals in tissues of wild and farmed shrimp Penaeus vannamei from the northwest coast of Mexico. Environ Int 22(4):443–450

    Article  CAS  Google Scholar 

  51. Lan Y, Sun J, Xu T, Chen C, Tian R, Qiu JW, Qian PY (2018) De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish. BMC Genomics 19:394

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ohmae E, Miyashita Y, Kato C (2013) Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects. Extremophiles 17(5):701–709

    Article  CAS  PubMed  Google Scholar 

  53. Nishiguchi Y, Abe F, Okada M (2011) Different pressure resistance of lactate dehydrogenases from hagfish is dependent on habitat depth and caused by tetrameric structure dissociation. Mar Biotechnol 13(2):137–141

    Article  CAS  Google Scholar 

  54. Crenshaw HC, Allen JA, Skeen V, Harris A, Salmon ED (1996) Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells. Exp Cell Res 227(2):285–297

    Article  CAS  PubMed  Google Scholar 

  55. Liu M, Xiao W, Zhang Q, Shi L, Wang X, Xu Y (2020) Methylmercury bioaccumulation in deepest ocean fauna: implications for ocean mercury biotransport through food webs. Environ Sci Technol Lett 7(7):469–476

    Article  CAS  Google Scholar 

  56. Ramirez-Llodra E, Brandt A, Danovaro R, de Mol B, Escobar E, German CR, Levin LA, Martinez Arbizu P, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M (2010) Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences 7(9):2851–2899

    Article  Google Scholar 

  57. Jamieson AJ et al (2017) Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 1(3)

  58. Marsden ID, Rainbow PS (2004) Does the accumulation of trace metals in crustaceans affect their ecology - the amphipod example? J Exp Mar Biol Ecol 300(1–2):373–408

    Article  CAS  Google Scholar 

  59. Keil S, De Broyer C, Zauke G-P (2008) Significance and interspecific variability of accumulated trace metal concentrations in Antarctic benthic crustaceans. Int Rev Hydrobiol 93(1):106–126

    Article  CAS  Google Scholar 

  60. Blum JD, Drazen JC, Johnson MW, Popp BN, Motta LC, Jamieson AJ (2020) Mercury isotopes identify near-surface marine mercury in deep-sea trench biota. Proc Natl Acad Sci U S A 117(47):29292–29298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith KL Jr, Ruhl HA, Kaufmann RS, Kahru M (2008) Tracing abyssal food supply back to upper-ocean processes over a 17-year time series in the northeast Pacific. Limnol Oceanogr 53(6):2655–2667

    Article  Google Scholar 

  62. Smith KL Jr, Ruhl HA, Huffard CL, Messié M, Kahru M (2018) Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc Natl Acad Sci U S A 115(48):12235–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amon DJ, Hilario A, Arbizu PM, Smith CR (2017) Observations of organic falls from the abyssal Clarion-Clipperton Zone in the tropical eastern Pacific Ocean. Mar Biodivers 47(2):311–321

    Article  Google Scholar 

  64. Ichino MC, Clark MR, Drazen JC, Jamieson A, Jones DOB, Martin AP, Rowden AA, Shank TM, Yancey PH, Ruhl HA (2015) The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Res I Oceanogr Res Pap 100:21–33

    Article  CAS  Google Scholar 

  65. Drazen JC, Popp BN, Choy CA, Clemente T, Forest LD, Smith KL Jr (2008) Bypassing the abyssal benthic food web: macrourid diet in the eastern North Pacific inferred from stomach content and stable isotopes analyses. Limnol Oceanogr 53(6):2644–2654

    Article  Google Scholar 

  66. Pfannkuche O, Boetius A, Lochte K, Lundgreen U, Thiel H (1999) Responses of deep-sea benthos to sedimentation patterns in the North-East Atlantic in 1992. Deep-Sea Res I Oceanogr Res Pap 46(4):573–596

    Article  Google Scholar 

  67. Aristegui J et al (2009) Microbial oceanography of the dark ocean's pelagic realm. Limnol Oceanogr 54(5):1501–1529

    Article  CAS  Google Scholar 

  68. Shi L, Xiao W, Liu Z, Pan B, Xu Y (2018) Diet change of hadal amphipods revealed by fatty acid profile: a close relationship with surface ocean. Mar Environ Res 142:250–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Shanghai Rainbowfish Ocean Technology Co., Ltd. for sample collection. We also thank Professor Jiasong Fang research group members and other people for sample collection. This work was supported in part by the Funding Project of the National Key Research and Development Program of China (2018YFC0310600), the National Key R&D Program of China (2018YFD0900601), the National Natural Science Foundation of China (Grant No. 31772826), and the major scientific innovation project from Shanghai Committee of Education (2017-01-07-00-10-E00060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianghua Xu.

Ethics declarations

Ethics Declaration

Experimental protocols involved dead animals in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Geng, D., Pan, B. et al. Trace Elemental Analysis of the Exoskeleton, Leg Muscle, and Gut of Three Hadal Amphipods. Biol Trace Elem Res 200, 1395–1407 (2022). https://doi.org/10.1007/s12011-021-02728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02728-9

Keywords

Navigation