Skip to main content
Log in

Evaluation of the Ameliorative Effect of Zinc Nanoparticles against Silver Nanoparticle–Induced Toxicity in Liver and Kidney of Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag-NPs) have various pharmaceutical and biomedical applications owing to their unique physicochemical properties. Zinc (Zn) is an essential trace element, a strong antioxidant, and has a primary role in gene expression, enzymatic reactions, and protein synthesis. The present study aims to explore the toxic effects of Ag-NPs (50 nm) on the liver and kidney of rats and also to evaluate the potential protective effect of Zn-NPs (100 nm) against these adverse effects. Forty adult Sprague–Dawley rats were randomly divided into four equal groups: control group, Ag-NPs group, Zn-NPs group, and Ag-NPs + Zn-NPs group. Ag-NPs (50 mg/kg) and/or Zn-NPs (30 mg/kg) were administered daily by gavage for 90 days. The results showed that exposure to Ag-NPs increased serum ALT, AST, urea, and creatinine. Ag-NPs also induced oxidative stress and lipid peroxidation and increased inflammatory cytokines in hepatic and renal tissues. Moreover, histopathological and immunohistochemical examinations revealed various histological alterations and positive caspase-3 expressions in the liver and kidney following exposure to Ag-NPs. On the other hand, most of these toxic effects were ameliorated by co-administration of Zn-NPs. It was concluded that Ag-NPs have hepatotoxic and nephrotoxic effects in rats via different mechanisms including oxidative stress, inflammation, and apoptosis and that Zn-NPs can be used to alleviate these harmful effects by their antioxidative, anti-inflammatory, and antiapoptotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yusuf M (2018) Silver Nanoparticles: synthesis and applications. In: Handbook of Ecomaterials, pp 2343–2356

    Google Scholar 

  2. Center of Food Safety. Nano-silver in food and food contact products, https://www.centerforfoodsafety.org/files/nanosilver_product_inventory-in-food-12514_66028. Accessed 11 Dec 2017.

  3. Kruszewski M, Brzoska K, Brunborg G et al (2011) Toxicity of silver nanomaterials in higher eukaryotes. Advances in Molecular Toxicology 5:179–218

    Article  Google Scholar 

  4. Prasad RY, McGee JK, Killius MG et al (2013) Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol in Vitro 27(6):2013–2021

    Article  CAS  PubMed  Google Scholar 

  5. Xin L, Wang J, Wu Y, Guo S, Tong J (2014) Increased oxidative stress and activated heat shock proteins in human cell lines by silver nanoparticles. Hum Exp Toxicol 34(3):315–323

    Article  PubMed  Google Scholar 

  6. Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M (2012) The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response in HepG2, A549 and THP-1 cells. Toxicol Lett 208(3):197–213

    Article  CAS  PubMed  Google Scholar 

  7. Lin Z, Monteiro-Riviere NA, Riviere JE (2015) Pharmacokinetics of metallic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7:189–217

    CAS  PubMed  Google Scholar 

  8. Choia JE, Kima S, Ahna JH et al (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159

    Article  Google Scholar 

  9. Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V (2013) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131(2):537–547

    Article  CAS  PubMed  Google Scholar 

  10. Korani M, Rezayat SM, Bidgoli SA (2013) Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iranian Journal of Pharmaceutical Research 12(3):511–519

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    Article  CAS  PubMed  Google Scholar 

  12. Sardari RRR, Zarchi SR, Talebi A et al (2012) Toxicological effects of silver nanoparticles in rats. Afr J Microbiol Res 6(27):5587–5593

    CAS  Google Scholar 

  13. Kouame K, Peter AI, Akang EN et al (2018) Effect of long-term administration of cinnamomum cassia silver nanoparticles on organs (kidneys and liver) of Sprague-Dawley rats. Turk J Biol 42(6):498–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pasquet J, Chevalier Y, Couval E, Bouvier D, Noizet G, Morlière C, Bolzinger MA (2014) Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties. Int J Pharm 460(1-2):92–100

    Article  CAS  PubMed  Google Scholar 

  15. Mielcarz-Skalska L, Smolińska B (2017) Zinc and nano-ZnO – influence on living organisms. Biotechnol Food Sci 81(2):93–102

    Google Scholar 

  16. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15(10):572–578

    Article  CAS  PubMed  Google Scholar 

  17. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawei AI, Zhisheng W, Angu Z (2009) Protective effects of nano-ZnO on the primary culture mice intestinal epithelial cells in in vitro against oxidative injury. J Anim Vet Adv 8(10):1964–1967

    Google Scholar 

  19. Saddick S, Afifi M, Abu Zinada OAA (2017) Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi Journal of Biological Science 24(7):1672–1678

    Article  CAS  Google Scholar 

  20. Raajshreer KR, Durairaj B (2017) Evaluation of the anti-tyrosinase and antioxidant potential of zinc oxide nanoparticles synthesized from the brown seaweed – Turbinaria conoides. Int J Appl Pharm 9(5):116–120

    Article  Google Scholar 

  21. Essa SS, El-Saied EM, El-Tawil OS, Gamal IM, Abd EL-Rahman SS (2019) Nanoparticles of zinc oxide defeat chlorpyrifos-induced immunotoxic effects and histopathological alterations. Vet World 12(3):440–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bashandy SAE, Alaamer A, Moussa SAA, Omara EA (2018) Role of zinc oxide nanoparticles in alleviating hepatic fibrosis and nephrotoxicity induced by thioacetamide in rats. Can J Physiol Pharmacol 96(4):337–344

    Article  CAS  PubMed  Google Scholar 

  23. Atef HA, Mansour MK, Ibrahim EM, Sayed el-Ahl RMH, al-Kalamawey NM, el Kattan YA, Ali MA (2016) Efficacy of zinc oxide nanoparticles and curcumin in amelioration the toxic effects in aflatoxicated rabbits. Int J Curr Microbiol App Sci 5(12):795–818

    Article  CAS  Google Scholar 

  24. Kim YR, Park JI, Lee EJ et al (2014) Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomedicine 9(2):109–126

    PubMed  PubMed Central  Google Scholar 

  25. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  26. Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017

    Article  CAS  PubMed  Google Scholar 

  27. Kim YS, Song MY, Park JD et al (2010) Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicol 7(1):1–11

    Article  CAS  Google Scholar 

  28. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Elsevier, Churchill Livingstone

    Google Scholar 

  29. Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin peroxidase complex in immunoperoxidase techniques. Am J Clin Pathol 75(6):816–821

    Article  CAS  PubMed  Google Scholar 

  30. Huang XJ, Choi YK, Im HS, Yarimaga O, Yoon E, Kim HS (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6(7):756–782

    Article  CAS  PubMed Central  Google Scholar 

  31. Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AAK, Vernekar SN (2010) Markers of renal function tests. N Am J Med Sci 2(4):170–173

    PubMed  PubMed Central  Google Scholar 

  32. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    Article  CAS  PubMed  Google Scholar 

  33. Ma W, Jing L, Valladares A, Mehta SL, Wang Z, Li PA, Bang JJ (2015) Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci 11(8):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheraghi J, Hosseini E, Hoshmandfar R, Sahraei R, Farmany A (2013) In vivo effect of silver nanoparticles on serum ALT, AST and ALP activity in male and female mice. Australian Journal of Basic and Applied Sciences 7(1):171–177

  35. Nasir GA, Samir HF, Mohammed AK (2015) Effects of silver nanoparticles in liver function enzymes and oxidative stress levels. World Journal of Pharmaceutical Research 4(9):2080–2989

    CAS  Google Scholar 

  36. Abdel-Wahhab MA, Ahmed H, El-Nekeety AA et al (2020) Chenopodium murale essential oil alleviates the genotoxicity and oxidative stress of silver nanoparticles in the rat kidney. Egypt J Chem 63(7):2631–2646

    Google Scholar 

  37. Rani V, Verma Y, Rana K, Rana SVS (2018) Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chem Biol Interact 295:84–92

    Article  CAS  PubMed  Google Scholar 

  38. Hassan I, Husain FM, Khan RA, Ebaid H, al-Tamimi J, Alhazza IM, Aman S, Ibrahim KE (2019) Ameliorative effect of zinc oxide nanoparticles against potassium bromate-mediated toxicity in Swiss albino rats. Environ Sci Pollut Res 26(10):9966–9980

    Article  CAS  Google Scholar 

  39. Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  CAS  PubMed  Google Scholar 

  40. Noshy PA, Azouz RA (2021) Neuroprotective effect of hesperidin against emamectin benzoate-induced neurobehavioral toxicity in rats. Neurotoxicol Teratol 86:106981

  41. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  42. Bressan E, Ferroni L, Gardin C, Rigo C, Stocchero M, Vindigni V, Cairns W, Zavan B (2013) Silver nanoparticles and mitochondrial interaction. Int J Dent 2013:312747

  43. Abd El-Maksoud EM, Lebda MA, Hashem AE, Taha NM, Kamel MA (2019) Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status. Environ Sci Pollut Res 26(25):25844–25854

    Article  CAS  Google Scholar 

  44. Shehata AM, Salem FMS, El-Saied EM, Abd El-Rahman SS, Mahmoud MY, Noshy PA (2021) Zinc nanoparticles ameliorate the reproductive toxicity induced by silver nanoparticles in male rats. Int J Nanomedicine 16:2555–2568

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ranjbar A, Firozian F, Soleimani Asl S, Ghasemi H, Taheri Azandariani M, Larki A, Kheiripour N, Hosseini A, Naserabadi A (2018) Nitrosative DNA damage after sub-chronic exposure to silver nanoparticle induces stress nephrotoxicity in rat kidney. Toxin Rev 37(4):327–333

    Article  CAS  Google Scholar 

  46. Nishanth RP, Jyotsna RG, Schlager JJ, Hussain SM, Reddanna P (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway. Nanotoxicology 5(4):502–516

    Article  CAS  PubMed  Google Scholar 

  47. Tiwari R, Singh RD, Khan H, Gangopadhyay S, Mittal S, Singh V, Arjaria N, Shankar J, Roy SK, Singh D, Srivastava V (2017) Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicology 11(5):671–686

    Article  CAS  PubMed  Google Scholar 

  48. Suntres ZE, Lui EMK (1990) Biochemical mechanism of metallothionein–carbon tetrachloride interaction in vitro. Biochem Pharmacol 39(5):833–840

    Article  CAS  PubMed  Google Scholar 

  49. Parat MO, Richard MJ, Béani JC, Favier A (1997) Involvement of zinc in intracellular oxidant/antioxidant balance. Biol Trace Elem Res 60(3):187–204

    Article  CAS  PubMed  Google Scholar 

  50. Bao B, Ahmad A, Azmi A, Li Y, Prasad A, Sarkar FH (2013) The biological significance of zinc in inflammation and aging. In: Inflammation, advancing age and nutrition: research and clinical interventions, 1st edn. Elsevier, New York, pp 15–27

    Google Scholar 

  51. Wessels I, Haase H, Engelhardt G, Rink L, Uciechowski P (2013) Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem 24(1):289–297

    Article  CAS  PubMed  Google Scholar 

  52. Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273(16):9357–9360

    Article  PubMed  Google Scholar 

  53. Sulaiman FA, Adeyemi OS, Akanji MA, Oloyede HOB, Sulaiman AA, Olatunde A, Hoseni AA, Olowolafe YV, Nlebedim RN, Muritala H, Nafiu MO, Salawu MO (2015) Biochemical and morphological alterations caused by silver nanoparticles in Wistar rats. Journal of Acute Medicine 5(4):96–102

    Article  Google Scholar 

  54. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19(7):975–983

    Article  CAS  PubMed  Google Scholar 

  55. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139

    Article  CAS  PubMed  Google Scholar 

  56. Singh SP, Bhargava CS, Dubery V, Mishra A, Singh Y (2017) Silver nanoparticles: biomedical applications, toxicity, and safety issues. International Journal of Research in Pharmacy and Pharmaceutical Sciences 4(2):01–10

    Google Scholar 

  57. Hussein R, Sarhan O (2014) Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine 9:1505–1517

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ahmadian E, Dizaj SM, Rahimpour E, Hasanzadeh A, Eftekhari A, Hosain zadegan H, Halajzadeh J, Ahmadian H (2018) Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. Mater Sci Eng C 93:465–471

    Article  CAS  Google Scholar 

  59. Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Funding sources

This research work was financially supported by Cairo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Noshy.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, A.M., Salem, F.M.S., El-Saied, E.M. et al. Evaluation of the Ameliorative Effect of Zinc Nanoparticles against Silver Nanoparticle–Induced Toxicity in Liver and Kidney of Rats. Biol Trace Elem Res 200, 1201–1211 (2022). https://doi.org/10.1007/s12011-021-02713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02713-2

Keywords

Navigation