Skip to main content

Advertisement

Log in

Distribution and Transformation of Mercury in Subtropical Wild-Caught Seafood from the Southern Taiwan Strait

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Wild-caught seafood contains significant amounts of mercury. Investigating the mercury accumulation levels in wild-caught seafood and analyzing its migration and transformation are of great value for assessing the health risks of mercury intake and for the tracking of mercury sources. We determined the concentrations and stable mercury isotopic compositions (δ202Hg, Δ199Hg, Δ200Hg, and Δ201Hg) of 104 muscle samples collected from 38 species of seafood typically harvested from the Taiwan Shallow Fishing Ground (TSFG), Southern Taiwan Strait. Overall, the concentrations of total mercury (THg) and methylmercury (MeHg) ranged from 11 to 479 ng/g (dry weight, dw) and 10 to 363 ng/g (dw), respectively, and were below the threshold value established by the USEPA and the Chinese government. Demersal and near-benthic species accumulated more mercury than pelagic or mesopelagic species. The characteristics of mercury isotopes in wild-caught marine species differed in terms of vertical and horizontal distribution. Considering the known peripheral land sources of mercury (Δ199Hg ≈ 0), the mercury in seafood from the TSFG (Δ199Hg > 0) did not originate from anthropogenic emissions. The ratio of Δ199Hg and Δ201Hg (1.18 ± 0.03) suggested that the photoreduction of Hg (II) and the photo-degradation of MeHg equally contributed to mass-independent fractionation. Based on the values of Δ199Hg/δ202Hg (1.18 ± 0.03), about 67% of the mercury in seawater had undergone microbial demethylation prior to methylation and entering the seafood. Additionally, the vertical distribution of Δ200Hg in seafood from different water depths implies that mercury input was in part caused by atmospheric deposition. Our results provide detailed information on the sources of mercury and its transfer in the food web in offshore fishing grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are available on request.

References

  1. Zhang W, Zhang X, Tian Y, Zhu Y, Tong Y, Li Y (2018a) Risk assessment of total mercury and methylmercury in aquatic products from offshore farms in China. J Hazard Mater 354:198–205. https://doi.org/10.1016/j.jhazmat.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  2. Xu X, Wang W (2017) Mercury exposure and source tracking in distinct marine-caged fish farm in southern China. Environ Pollut 220:1138–1146. https://doi.org/10.1016/j.envpol.2016.11.021

    Article  CAS  PubMed  Google Scholar 

  3. Xia C, Wu X, Lam JC, Xie Z, Lam PK (2013) Methylmercury and trace elements in the marine fish from coasts of East China. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:1491–1501. https://doi.org/10.1080/10934529.2013.796820

    Article  CAS  PubMed  Google Scholar 

  4. Chételat J, Cloutier L, Amyot M (2013) An investigation of enhanced mercury bioaccumulation in fish from offshore feeding. Ecotoxicology 22:1020–1032. https://doi.org/10.1007/s10646-013-1087-4

    Article  CAS  PubMed  Google Scholar 

  5. Bailey LT, Mitchell CPJ, Engstrom DR, Berndt ME, Coleman JK, Johnson NW (2017) Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Sci Total Environ 580:1197–1204. https://doi.org/10.1016/j.scitotenv.2016.12.078

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Chen Z, Wang P, Huang R, Huo W, Huang W, Yang X, Peng J (2018) Health risk assessment for local residents from the South China Sea based on mercury concentrations in marine fish. Bull Environ Contam Toxicol 101:398–402. https://doi.org/10.1007/s00128-018-2388-3

    Article  CAS  PubMed  Google Scholar 

  7. Sinkus W, Shervette V, Ballenger J, Reed LA, Plante C, White B (2017) Mercury bioaccumulation in offshore reef fishes from waters of the Southeastern USA. Environ Pollut 228:222–233. https://doi.org/10.1016/j.envpol.2017.04.057

    Article  CAS  PubMed  Google Scholar 

  8. Houserová P, Kubáň V, Kráčmar S, Sitko J (2007) Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environ Pollut 145:185–194. https://doi.org/10.1016/j.envpol.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  9. NPC (The National People’s Congress of the People’s Republic of China) (2016) Decision of the Standing Committee of the National People’s Congress of China on ratifying the Minamata Convention on Mercury. http://www.npc.gov.cn/npc/c10134/201604/db5f355a75c54013ac5158e79e0a1718.shtml

  10. Bergquist BA, Blum JD (2009) The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation. Elements 5:353–357. https://doi.org/10.2113/gselements.5.6.353

    Article  CAS  Google Scholar 

  11. Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in earth and environmental sciences. In Jeanloz R editor Annu Rev Earth Pl Sc 42:249–269. https://doi.org/10.1146/annurev-earth-050212-124107

    Article  CAS  Google Scholar 

  12. Chen J, Hintelmann H, Zheng W, Feng X, Cai H, Wang Z (2016) Isotopic evidence for distinct sources of mercury in lake waters and sediments. Chem Geol 426:33–44. https://doi.org/10.1016/j.chemgeo.2016.01.030

    Article  CAS  Google Scholar 

  13. Yuan S, Zhang Y, Chen J, Kang S, Zhang J, Feng X (2015) Large variation of mercury isotope composition during a single precipitation event at Lhasa City, Tibetan Plateau, China. Proced Earth Planet Sci 13:282–286. https://doi.org/10.1016/j.proeps.2015.07.066

    Article  CAS  Google Scholar 

  14. Yin R, Feng X, Zhang J, Pan K, Wang W, Li X (2016) Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere 147:173–179. https://doi.org/10.1016/j.chemosphere.2015.12.100

    Article  CAS  PubMed  Google Scholar 

  15. Bergquist BA, Blum JD (2007) Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–420. https://doi.org/10.1126/science.1148050

    Article  CAS  PubMed  Google Scholar 

  16. Yin R, Feng X, Wang J, Bao Z, Yu B, Chen J (2013) Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China. Chem Geol 336:80–86. https://doi.org/10.1016/j.chemgeo.2012.04.017

    Article  CAS  Google Scholar 

  17. Chen J, Hintelmann H, Feng X, Dimock B (2012) Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim Cosmochim Ac 90:33–46. https://doi.org/10.1016/j.gca.2012.05.005

    Article  CAS  Google Scholar 

  18. Gleason JD, Blum JD, Moore TC, Polyak L, Jakobsson M, Meyers PA (2017) Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments. Geochim Cosmochim Ac 197:245–262. https://doi.org/10.1016/j.gca.2016.10.033

    Article  CAS  Google Scholar 

  19. Liu M, Chen L, Wang X, Zhang W, Tong Y, Ou L (2016) Mercury export from Mainland China to adjacent seas and its influence on the marine mercury balance. Environ Sci Technol 50:6224–6232. https://doi.org/10.1021/acs.est.5b04999

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Schartup AT, Valberg AP, Ewald JD, Krabbenhoft DP, Yin R (2016) Environmental origins of methylmercury accumulated in subarctic estuarine fish indicated by mercury stable isotopes. Environ Sci Technol 50:11559–11568. https://doi.org/10.1021/acs.est.6b03206

    Article  CAS  PubMed  Google Scholar 

  21. Sun R, Sonke JE, Liu G (2016) Biogeochemical controls on mercury stable isotope compositions of world coal deposits: a review. Earth-Sci Rev 152:1–13. https://doi.org/10.1016/j.earscirev.2015.11.005

    Article  CAS  Google Scholar 

  22. Tang S, Feng C, Feng X, Zhu J, Sun R, Fan H (2017) Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China. J Hazard Mater 328:90–97. https://doi.org/10.1016/j.jhazmat.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  23. Sun R, Heimbürger LE, Sonke JE, Liu G, Amouroux D, Berail S (2013) Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants. Chem Geol 336:103–111. https://doi.org/10.1016/j.chemgeo.2012.10.055

    Article  CAS  Google Scholar 

  24. Jackson TA, Telmer KH, Muir DCG (2013) Mass-dependent and mass-independent variations in the isotope composition of mercury in cores from lakes polluted by a smelter: Effects of smelter emissions, natural processes, and their interactions. Chem Geol 352:27–46. https://doi.org/10.1016/j.chemgeo.2015.01.014

    Article  CAS  Google Scholar 

  25. Gratz LE, Keeler GJ, Blum JD, Sherman LS (2010) Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ Sci Technol 44:7764–7770. https://doi.org/10.1021/es100383w

    Article  CAS  PubMed  Google Scholar 

  26. Gehrke GE, Blum JD, Slotton DG, Greenfield BK (2011) Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments. Environ Sci Technol 45:1264–1270. https://doi.org/10.1021/es103053y

    Article  CAS  PubMed  Google Scholar 

  27. Sackett DK, Drazen JC, Popp BN, Choy CA, Blum JD, Johnson MW (2017) Carbon, nitrogen, and mercury isotope evidence for the biogeochemical history of mercury in Hawaiian marine bottomfish. Environ Sci Technol 51:13976–13984. https://doi.org/10.1021/acs.est.7b04893

    Article  CAS  PubMed  Google Scholar 

  28. Figueiredo N, Serralheiro ML, Canário J, Duarte A, Hintelmann H, Carvalho C (2018) Evidence of mercury methylation and demethylation by the estuarine microbial communities obtained in stable Hg isotope studies. Int J Environ Res Public Health 15:2141. https://doi.org/10.3390/ijerph15102141

    Article  CAS  PubMed Central  Google Scholar 

  29. Liu C, Hua X, Liu H, Yu B, Mao Y, Wang D (2018) Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes. Ecotox Environ Safe 150:327–334. https://doi.org/10.1016/j.ecoenv.2017.12.053

    Article  CAS  Google Scholar 

  30. Zhang R, Russell J, Xiao X, Zhang F, Li T, Liu Z (2018b) Historical records, distributions and sources of mercury and zinc in sediments of East China sea: implication from stable isotopic compositions. Chemosphere 205:698–708. https://doi.org/10.1016/j.chemosphere.2018.04.100

    Article  CAS  PubMed  Google Scholar 

  31. Tseng H, Ou C (2010) Taiwan and China: a unique fisheries relationship. Mar Policy 34:1156–1162. https://doi.org/10.1016/j.marpol.2010.03.015

    Article  Google Scholar 

  32. USEPA (United States Environmental Protection Agency) Method 1631, revision E (2002) Mercury in water by oxidation, purge and trap, and cold vapour atomic fluorescence spectrometry. Washington, DC.

  33. USEPA (United States Environmental Protection Agency) Method 1630 (1998) Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and cold vapor atomic fluorescence spectrometry. Washington, DC

  34. Foucher D, Hintelmann H (2006) High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry. Anal Bioanal Chem 384:1470–1478. https://doi.org/10.1007/s00216-006-0373-x

    Article  CAS  PubMed  Google Scholar 

  35. Lin H, Yuan D, Lu B, Huang S, Sun L, Zhang F (2015) Isotopic composition analysis of dissolved mercury in seawater with purge and trap preconcentration and a modified Hg introduction device for MC-ICP-MS. J Anal Atom Spectrom 30:353–359. https://doi.org/10.1039/C4JA00242C

    Article  CAS  Google Scholar 

  36. Blum JD, Bergquist BA (2007) Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388:353–359. https://doi.org/10.1007/s00216-007-1236-9

    Article  CAS  PubMed  Google Scholar 

  37. Balogh SJ, Tsui MT-K, Blum JD, Matsuyama A, Woerndle GE, Yano S (2015) Tracking the fate of mercury in the fish and bottom sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes. Environ Sci Technol 49:5399–5406. https://doi.org/10.1021/acs.est.5b00631

    Article  CAS  PubMed  Google Scholar 

  38. USEPA (United States Environmental Protection Agency) (2000) Risk-based concentration table. United States Environmental Protection Agency, Washington DC, Philadelphia PA

    Google Scholar 

  39. Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci Total Environ 387:96–104. https://doi.org/10.1016/j.scitotenv.2007.07.044

    Article  CAS  PubMed  Google Scholar 

  40. National Bureau of Statistics of China (2019) Statistical Communiqué of the People’s Republic of China on the 2018 National Economic and Social Development, http://www.stats.gov.cn/english/PressRelease/201902/t20190228_1651335.html.

  41. USEPA (United States Environmental Protection Agency) (2001) Oral reference dose for methyl mercury, Integrated Risk Information System (IRIS). Washington, DC

    Google Scholar 

  42. Wu Y, Zhao Y, Li J (2018) The Fifth China Total Diet Study. Science Press, Beijing, China

    Google Scholar 

  43. GASC (General Administration of Sport of China). Report on National Physical Fitness Surveillance of China 2014, 2015. http://www.sport.gov.cn/n315/n329/c216784/content.html.

  44. Cheng GY (2016) A research on Chinese Resident Animal Products Consumption Characteristics and Tendency. People’s Publishing House, Beijing, China

    Google Scholar 

  45. Storelli MM (2008) Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46:2782–2788. https://doi.org/10.1016/j.fct.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  46. General Administration of Quality Supervision, Inspection and Quarantine of PRC. GB18406. 4-2001 Safety qualification for agricultural product-Safety requirements for non-environmental pollution aquatic products. Beijing: China Standards Press.

  47. Li WZ, Wang WX (2019) Inter-species differences of total mercury and methylmercury in farmed fish in Southern China: does feed matter? Sci Total Environ 651:1857–1866. https://doi.org/10.1016/j.scitotenv.2018.10.095

    Article  CAS  PubMed  Google Scholar 

  48. Qiu Y, Wang W (2016) Comparison of mercury bioaccumulation between wild and mariculture food chains from a subtropical bay of Southern China. Environ Geochem Health 38:39–49. https://doi.org/10.1007/s10653-015-9677-0

    Article  CAS  PubMed  Google Scholar 

  49. Zhu A, Xu Z, Liu G, Deng L, Fang H, Huang L (2014) Inner- and inter-species differences of mercury concentration in common fishes from the Yellow Sea. J Environ Sci-China 35:764–769. https://doi.org/10.13227/j.hjkx.2014.02.005

    Article  Google Scholar 

  50. Le Croizier G, Schaal G, Point D, Le Loc’h F, Machu E, Fall M (2019) Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. Sci Total Environ 650:2129–2140. https://doi.org/10.1016/j.scitotenv.2018.09.330

    Article  CAS  PubMed  Google Scholar 

  51. Di LG, Casini I, Caproni R, Fusari A, Orban E (2017) Total mercury levels in commercial fish species from Italian fishery and aquaculture. Food Addit Contam Part B Surveill 10:118–127. https://doi.org/10.1080/19393210.2017.1281353

    Article  CAS  Google Scholar 

  52. Cossa D, Durrieu MX, Schäfer J, Lanceleur L, Guédron S, Buscail R (2017) The open sea as the main source of methylmercury in the water column of the Gulf of Lions (Northwestern Mediterranean margin). Geochim Cosmochim Ac 199:222–237. https://doi.org/10.1016/j.gca.2016.11.037

    Article  CAS  Google Scholar 

  53. Tong Y, Wang M, Bu X, Guo X, Lin Y, Lin H (2017) Mercury concentrations in China’s coastal waters and implications for fish consumption by vulnerable populations. Environ Pollut 231:396–405. https://doi.org/10.1016/j.envpol.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  54. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662. https://doi.org/10.1021/cr050353m

    Article  CAS  PubMed  Google Scholar 

  55. Liu J, Feng X, Yin R, Zhu W, Li Z (2011) Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China. Chem Geol 287:81–89. https://doi.org/10.1016/j.chemgeo.2011.06.001

    Article  CAS  Google Scholar 

  56. Wang R, Wang W (2018) Diet-specific trophic transfer of mercury in tilapia (Oreochromis niloticus): Biodynamic perspective. Environ Pollut 234:288–296. https://doi.org/10.1016/j.envpol.2017.11.071

    Article  CAS  PubMed  Google Scholar 

  57. Doke D, Gohlke J (2014) Estimation of human health risk from exposure to methylmercury via fish consumption in Ghana. J Health Pollut 4:18–25. https://doi.org/10.5696/2156-9614-4-6.18

    Article  Google Scholar 

  58. Blum JD, Popp BN, Drazen JC, Anela CC, Johnson MW (2013) Methylmercury production below the mixed layer in the North Pacific Ocean. Nat Geosci 6:879–884. https://doi.org/10.1038/ngeo1918

    Article  CAS  Google Scholar 

  59. Kwon SY, Blum JD, Chen CY, Meattey DE, Mason RP (2014) Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the Northeastern U.S. Environ Sci Technol 48:10089–10097. https://doi.org/10.1021/acs.est.6b00898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Archer DE, Blum JD (2018) A model of mercury cycling and isotopic fractionation in the ocean. Biogeosciences 15(20):6297–6313. https://doi.org/10.5194/bg-15-6297-2018

    Article  CAS  Google Scholar 

  61. Munson KM, Lamborg CH, Swarr GJ, Saito MA (2015) Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean. Glob Biogeochem Cycles 29:656–676. https://doi.org/10.1002/2015GB005120

    Article  CAS  Google Scholar 

  62. Sun R, Yuan J, Sonke JE, Zhang Y, Zhang T, Zheng W, Chen S, Meng M, Chen J, Liu Y, Peng X, Liu C (2020) Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nat Commun 11:3389. https://doi.org/10.1038/s41467-020-17045-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yin R, Feng X, Chen B, Zhang J, Wang W, Li X (2015) Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition. Environ Sci Technol 49:1347–1355. https://doi.org/10.1021/es504070y

    Article  CAS  PubMed  Google Scholar 

  64. Tao H, Zhao K, Ding W, Li J, Liang P, Wu S (2016) The level of mercury contamination in mariculture sites at the estuary of Pearl River and the potential health risk. Environ Pollut 219:829–836. https://doi.org/10.1016/j.envpol.2016.07.067

    Article  CAS  PubMed  Google Scholar 

  65. Kritee K, Barkay T, Blum JD (2009) Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochim Cosmochim Ac 73:1285–1296. https://doi.org/10.1016/j.gca.2008.11.038

    Article  CAS  Google Scholar 

  66. Senn DB, Chesney EJ, Blum JD, Bank MS, Maage A, Shine JP (2010) Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the Northern Gulf of Mexico. Environ Sci Technol 44:1630–1637. https://doi.org/10.1021/es902361j

    Article  CAS  PubMed  Google Scholar 

  67. Lepak RF, Janssen SE, Yin R, Krabbenhoft DP, Ogorek JM, DeWild JF (2018) Factors affecting mercury stable isotopic distribution in piscivorous fish of the Laurentian Great Lakes. Environ Sci Technol 52:2768–2776. https://doi.org/10.1021/acs.est.7b06120

    Article  CAS  PubMed  Google Scholar 

  68. Rolison JM, Landing WM, Luke W, Cohen M, Salters VJM (2013) Isotopic composition of species-specific atmospheric Hg in a coastal environment. Chem Geol 336:37–49. https://doi.org/10.1016/j.chemgeo.2012.10.007

    Article  CAS  Google Scholar 

  69. Malvandi H (2021) Assessing the potential health risk from mercury through consumption of the most popular and preferable fish species, Rutilus frisii kutum, on the Northern Coast of Iran. Biol Trace Elem Res 199:1604–1610. https://doi.org/10.1007/s12011-020-02248-y

    Article  CAS  PubMed  Google Scholar 

  70. Zrelli S, Amairia S, Chaabouni M, Oueslati W, Chine O, Nachi Mkaouar A, Cheikhsbouii A, Ghorbel R, Zrelli M (2021) Contamination of fishery products with mercury, cadmium, and Lead in Tunisia: level’s estimation and human health risk assessment. Biol Trace Elem Res 199:721–731. https://doi.org/10.1007/s12011-020-02179-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Cai Yingjie, who supported the sampling voyage on his own fishing vessel. We are indebted to Cheng Xue and Tiange Xu for their field sampling contributions and assistance with fish species identification. We would also like to thank Dr. Chen Yaojin and Dr. Huang Shuyuan for assistance with the use of MC-ICP-MS.

Funding

This study was supported by the National Natural Science Foundation of China (No. 41406120) and the Natural Science Foundation of Fujian Province (No. 2019J01035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lumin Sun.

Ethics declarations

Ethics Approval

All experiments have been conducted as per the guidelines of the Laboratory Animal Management and Ethics Committee, Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China. All the fish samples used in this study were collected from the net fishing catch which were supplied by the owner of the commercial fishing trawler and were all not alive when received by the authors. In other words, the samples were part of the catch for sale. Therefore, research on these fish does not involve ethical clearance [69, 70]. In addition, the fishing process complied with internationally accepted methods and standards.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chen, W., Yuan, D. et al. Distribution and Transformation of Mercury in Subtropical Wild-Caught Seafood from the Southern Taiwan Strait. Biol Trace Elem Res 200, 855–867 (2022). https://doi.org/10.1007/s12011-021-02695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02695-1

Keywords

Navigation