Skip to main content

Advertisement

Log in

A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Metals, many of which are potentially toxic, are present in the aquatic environment originated from both natural and anthropogenic sources. In these ecosystems, these elements are mostly deposited in the sediment, followed by water dissolution, potentially contaminating resident biota. Among several aquatic animals, crustaceans are considered excellent bioindicators, as they live in close contact with contaminated sediment. The accumulation of metal, whether they are classified as essential, when in excessive quantities or nonessential, not only cause damage to the health of these animals, but also to the man who consumes seafood. Among the main toxic elements to animal and human health are aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel and silver. In this context, this systematic review aimed to investigate the dynamics of these metals in water, the main bioaccumulative tissues in crustaceans, the effects of these contaminants on animal and human health, and the regulatory limits for these metals worldwide. A total of 91 articles were selected for this review, and an additional 68 articles not found in the three assessed databases were considered essential and included, totaling 159 articles published between 2010 and 2020. Our results indicate that both chemical speciation and abiotic factors such as pH, oxygen and salinity in aquatic environments affect element bioavailability, dynamics, and toxicity. Among crustaceans, crabs are considered the main bioindicator biological system, with the hepatopancreas appearing as the main bioaccumulator organ. Studies indicate that exposure to these elements may result in nervous, respiratory, and reproductive system effects in both animals and humans. Finally, many studies indicate that the concentrations of these elements in crustaceans intended for human consumption exceed limits established by international organizations, both with regard to seafood metal contents and well as daily, weekly, or monthly intake limits set for humans, indicating consumer health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630. https://doi.org/10.3390/ijms161226183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva Pinheiro JP, Bertacini de Assis C, Sanches EA, Moreira RG (2020) Aluminum, at an environmental concentration, associated with acidic pH and highwater temperature, causes impairment of sperm quality in the freshwater teleost Astyanax altiparanae (Teleostei: Characidae). Environ Pollut 262:114252. https://doi.org/10.1016/j.envpol.2020.114252

    Article  CAS  PubMed  Google Scholar 

  3. Wolle MM, Stadig S, Conklin SD (2019) Market basket survey of arsenic species in the top ten most consumed seafoods in the United States. J Agric Food Chem 67:8253–8267. https://doi.org/10.1021/acs.jafc.9b02314

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Lv W, Huang Y, Fan B, Li Y, Zhao Y (2017) Effects of cadmium on lipid metabolism in female estuarine crab, Chiromantes dehaani. Comp Biochem Physiol C Toxicol Pharmacol 188:9–16. https://doi.org/10.1016/j.cbpc.2016.06.002

    Article  CAS  Google Scholar 

  5. Raknuzzaman M, Ahmed MK, Islam MS et al (2016) Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ Sci Pollut Res 23:17298–17310. https://doi.org/10.1007/s11356-016-6918-4

    Article  CAS  Google Scholar 

  6. Van Ael E, Blust R, Bervoets L (2017) Metals in the Scheldt estuary: from environmental concentrations to bioaccumulation. Environ Pollut 228:82–91. https://doi.org/10.1016/j.envpol.2017.05.028

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigues PA, Ferrari RG, Hauser-Davis RA, Santos LN, Conte-Junior CA (2020) Seasonal influences on swimming crab mercury levels in an eutrophic estuary located in southeastern Brazil. Environ Sci Pollut Res 27:3473–3482. https://doi.org/10.1007/s11356-019-07052-3

    Article  CAS  Google Scholar 

  8. Owens E, Effer SW, Bookman R, Driscoll CT, Matthews DA, Effier AJP (2009) Resuspension of mercury-contaminated sediments from an in-lake industrial waste deposit. J Environ Eng 135:526–534. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:7(526)

    Article  CAS  Google Scholar 

  9. Li R, Tang X, Guo W, Lin L, Zhao L, Hu Y, Liu M (2020) Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River. Sci Total Environ 714:136779. https://doi.org/10.1016/j.scitotenv.2020.136779

    Article  CAS  PubMed  Google Scholar 

  10. Das S, Tseng LC, Chou C, Wang L, Souisssi S, Hwang JS (2019) Effects of cadmium exposure on antioxidant enzymes and histological changes in the mud shrimp Austinogebia edulis (Crustacea: Decapoda). Environ Sci Pollut Res 26:7752–7762. https://doi.org/10.1007/s11356-018-04113-x

    Article  CAS  Google Scholar 

  11. Tang L, Hamid Y, Zehra A, Sahito ZA, He Z, Khan MB, Feng Y, Yang X (2020) Mechanisms of water regime effects on uptake of cadmium and nitrate by two ecotypes of water spinach (Ipomoea aquatica Forsk.) in contaminated soil. Chemosp 246:125798. https://doi.org/10.1016/j.chemosphere.2019.125798

    Article  CAS  Google Scholar 

  12. Rodrigues PA, Ferrari RG, Santos LN, Conte-Junior CA (2019) Mercury in aquatic fauna contamination: a systematic review on its dynamics and potential health risks. J Environ Sci 84:205–218. https://doi.org/10.1016/j.jes.2019.02.018

    Article  Google Scholar 

  13. Manullang CY, Hutabarat J, Widowati I (2014) Bioaccumulation of cadmium (Cd) by white shrimp Penaeus merguiensis at different salinity in Kedungmalang estuary, Jepara (Central Java). Mar Res Indones 39(1):31–37. https://doi.org/10.14203/mri.v39i1.84

    Article  Google Scholar 

  14. Karar S, Hazra S, Das S (2019) Assessment of the heavy metal accumulation in the Blue Swimmer Crab (Portunus pelagicus), northern Bay of Bengal: role of salinity. Mar Pollut Bull 143:101–108. https://doi.org/10.1016/j.marpolbul.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  15. Lee JA, Marsden ID, Glover CN (2010) The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquat Toxicol 99(1):65–72. https://doi.org/10.1016/j.aquatox.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  16. Magesky A, Pelletier É (2018) Cytotoxicity and physiological effects of silver nanoparticles on marine invertebrates. Cell Mol Toxicol Nanop:285–309. https://doi.org/10.1007/978-3-319-72041-8_17

  17. Baki MA, Hossain MM, Akter J, Quraishi SB, Haque Shojib MF, Atique Ullah AKM, Khan MF (2018) Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol Environ Saf 159:153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035

    Article  CAS  PubMed  Google Scholar 

  18. Çoğun HY, Firat O, Aytekin T, Firidin G, Firat O, Varkal H, Temiz O, Kargin F (2017) Heavy metals in the blue crab (Callinectes sapidus) in Mersin Bay, Turkey. Bull Environ Contam Toxicol 98:824–829. https://doi.org/10.1007/s00128-017-2086-6

    Article  CAS  PubMed  Google Scholar 

  19. Jacobo LL, Díaz F, Re AD, Galindo-Sanchez CE, Sanchez-Lizarraga AL, Nuñez-Moreno LA, Moreno-Sierra D (2016) Physiological responses of the red rocky crab Cancer antennarius exposed to different concentrations of copper sulfate. Rev Biol Mar Oceanogr 51(2):327–336. https://doi.org/10.4067/S0718-19572016000200010

    Article  Google Scholar 

  20. Zhu Q-H, Zhou Z-K, Tu D-D, Zhou Y-L, Wang C, Liu Z-P, Gu W-B, Chen Y-Y, Shu M-A (2018) Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): histopathological changes and expression characterization of stress response genes. Aquat Toxicol 195:1–7. https://doi.org/10.1016/j.aquatox.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  21. Maharajan A, Rajalakshmi S, Vijayakumaran M, Kumarasamy P (2011) Sublethal effect of copper toxicity against histopathological changes in the spiny lobster, Panulirus homarus (Linnaeus, 1758). Biol Trace Elem Res 145(2):201–210. https://doi.org/10.1007/s12011-011-9173-z

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Sun H, Qian Y, Yang J (2017) Impairments of cadmium on vitellogenin accumulation inthe hepatopancreas of fresh water crab Sinopotamon henanense. Environ Sci Pollut Res 24:18160–18167. https://doi.org/10.1007/s11356-017-9491-6

    Article  CAS  Google Scholar 

  23. Ayanda IO, Dedeke GA, Ekhator UI, Etiebet MK (2018) Proximate composition and heavy metal analysis of three aquatic foods in Makoko River, Lagos, Nigeria. J Food Qual 2362843:6, 3. https://doi.org/10.1155/2018/2362843

    Article  CAS  Google Scholar 

  24. Azad AM, Frantzen S, Bank MS, Johnsen IA, Tessier E, Amouroux D, Madsen L, Maage A (2019) Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. Sci Total Environ 667:622–637. https://doi.org/10.1016/j.scitotenv.2019.02.352

    Article  CAS  PubMed  Google Scholar 

  25. Kumar SB, Padhi RK, Satpathy KK (2019) Trace metal distribution in crab organs and human health risk assessment on consumption of crabs collected from coastal water of South East coast of India. Mar Pollut Bull 141:273–282. https://doi.org/10.1016/j.marpolbul.2019.02.022

    Article  CAS  Google Scholar 

  26. Moslen M, Miebaka CA (2017) Heavy metal contamination in fish (Callinectis amnicola) From an Estuarine Creek in the Niger Delta, Nigeria and Health Risk Evaluation. Bull Environ Contam Toxicol 99(8). https://doi.org/10.1007/s00128-017-2169-4

  27. Russell A, MacFarlane GR, Nowak B, Moltschaniwskyj NA, Taylor MD (2019) Lethal and sub-lethal effects of aluminium on a juvenile penaeid shrimp. Thalassas: Int J Mar Sci 35(2):359–368. https://doi.org/10.1016/0269-7491(91)90033-S

    Article  Google Scholar 

  28. Aires MS, Paganini CL, Bianchini A (2018) Biochemical and physiological effects of nickel in the euryhaline crab Neohelice granulata (Dana, 1851) acclimated to different salinities. Comp Biochem Physiol C Toxicol Pharmacol 204:51–62. https://doi.org/10.1016/j.cbpc.2017.11.007

    Article  CAS  Google Scholar 

  29. Wu H, Li Y, Lang X, Wang L (2015) Bioaccumulation, morphological changes, and induction of metallothionein gene expression in the digestive system of the freshwater crab Sinopotamon henanense after exposure to cadmium. Environ Sci Pollut Res Int 22(15):11585–11594. https://doi.org/10.1007/s11356-015-4419-5

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Y, Wang X, Qin Y, Zheng B (2010) Mercury (Hg2+) effect on enzyme activities and hepatopancreas histostructures of juvenile Chinese mitten crab Eriocheir sinensis. Chin J Oceanol Limnol 28(3):427–434. https://doi.org/10.1007/s00343-010-9030-2

    Article  CAS  Google Scholar 

  31. Li N, Hou Y-H, Jing W-X, Dahms H-U, Wang L (2016) Quality decline and oxidative damage in sperm of freshwater crab Sinopotamon henanense exposed to lead. Ecotoxicol Environ Saf 130:193–198. https://doi.org/10.1016/j.ecoenv.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  32. Xu P, Chen H, Xi Y, Mao X, Wang L (2016) Oxidative stress induced by acute and subchronic cadmium exposure in the ovaries of the freshwater crab Sinopotamon henanense (DAI, 1975). Crustaceana 89(9):1041–1055. https://doi.org/10.1163/15685403-00003573

    Article  Google Scholar 

  33. Mayekar V, Pathare M, Afonso G, Mohite VT, Lahir YK, Raut PD (2012) Effects of sub-lethal dose of nickel on the biochemical parameters in the tissues of female crab Scylla serrata, from Mumbai coast. J Ecophysiol Occup Health 12:69–76. https://doi.org/10.18311/jeoh/2012/1747

    Article  CAS  Google Scholar 

  34. Menezes EJ, Cruz BP, Martins CMG, Maciel FE (2019) Copper exposure alters the metabolism of the blue crab Callinectes sapidus submitted to osmotic shock. Mar Pollut Bull 150:110743. https://doi.org/10.1016/j.marpolbul.2019.110743

    Article  CAS  PubMed  Google Scholar 

  35. Pourret O, Hursthouse A (2019) It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int J Environ Res Public Health 16(22):6. https://doi.org/10.3390/ijerph16224446

    Article  CAS  Google Scholar 

  36. Camargo MMP, Fernandes MN, Martinez CBR (2009) How aluminium exposure promotes osmoregulatory disturbances in the neotropical freshwater fish Prochilus lineatus. Aquat Toxicol 94:40–46. https://doi.org/10.1016/j.aquatox.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  37. Gillmore ML, Golding LA, Angel BM, Adams MS, Jolley DF (2016) Toxicity of dissolved and precipitated aluminium to marine diatoms. Aquat Toxicol 174:82–91. https://doi.org/10.1016/j.aquatox.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  38. Peto MV (2010) Aluminium and iron in humans: bioaccumulation, pathology and removal. Rejuvenation Res 13(5):589–598. https://doi.org/10.1089/rej.2009.0995

    Article  CAS  PubMed  Google Scholar 

  39. Hong S, Kwon H-O, Choi S-D, Lee J-S, Khim JS (2016) Arsenic speciation in water, suspended particles, and organisms from the Taehwa River Estuary of South Korea. Mar Pollut Bull 108(1-2):155–162. https://doi.org/10.1016/j.marpolbul.2016.04.035

    Article  CAS  PubMed  Google Scholar 

  40. Saha S, Ray S (2014) Sublethal effect of arsenic on oxidative stress and antioxidant status in Scylla serrata. Clean Soil Air Water 42(9999):1–7. https://doi.org/10.1002/clen.201300294

    Article  CAS  Google Scholar 

  41. Khoramnejadian S, Fatemi F (2015) Bioaccumulation of arsenic in blue swimmer crab. Int Proc Chem Biol Environ Eng 88:59–64. https://doi.org/10.7763/IPCBEE

    Article  CAS  Google Scholar 

  42. Kollander B, Sand S, Almerud P, Ankarberg EH, Concha G, Barregård L, Darnerud PO (2019) Inorganic arsenic in food products on the Swedish market and a risk-based intake assessment. Sci Total Environ 672:525–535. https://doi.org/10.1016/j.scitotenv.2019.03.289

    Article  CAS  PubMed  Google Scholar 

  43. Oliveira LHB, Ferreira NS, Oliveira A, Nogueira ARA, Gonzalez MH (2017) Evaluation of distribution and bioaccumulation of Arsenic by ICP-MS in Tilapia (Oreochromis niloticus) cultivated in different environments. J Braz Chem Soc 28(12):2455–2463. https://doi.org/10.21577/0103-5053.20170101

    Article  CAS  Google Scholar 

  44. Sanchez TR, Perzanowski M, Graziano JH (2016) Inorganic arsenic and respiratory health, from early life exposure to sex-specific effects: a systematic review. Environ Res 147:537–555. https://doi.org/10.1016/j.envres.2016.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KR (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282. https://doi.org/10.1016/j.scitotenv.2016.12.113

    Article  CAS  PubMed  Google Scholar 

  46. Zhang W, Guo Z, Song D, Du S, Zhang L (2018) Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China. Sci Total Environ 626:621–629. https://doi.org/10.1016/j.scitotenv.2018.01.108

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Reynolds M (2019) Cadmium exposure in living organisms: a short review. Sci Total Environ 678:761–767. https://doi.org/10.1016/j.scitotenv.2019.04.395

    Article  CAS  PubMed  Google Scholar 

  48. Mason RP (2013) Trace metals in aquatic systems, 1st edn. Wiley-Blackwell

  49. Thwala M, Newman B, Cyrus D (2011) Influence of salinity and cadmium on the survival and osmoregulation of Callianassa kraussi and Chiromantes eulimene (Crustacea: Decapoda). Afr J Aquat Sci 36(2):181–189. https://doi.org/10.2989/16085914.2011.589115

    Article  CAS  Google Scholar 

  50. Wiech M, Frantzen S, Duinker A, Daniel Rasinger J, Maage A (2019) Cadmium in brown crab Cancer pagurus. Effects of location, season, cooking and multiple physiological factors and consequences for food safety. Sci Total Environ 134922. https://doi.org/10.1016/j.scitotenv.2019.134922

  51. Liu Q, Xu X, Zeng J, Shi X, Liao Y, Du P, Tang Y, Huang W, Chen Q, Shou L (2019) Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Mar Pollut Bull 141:215–226. https://doi.org/10.1016/j.marpolbul.2019.02.058

    Article  CAS  PubMed  Google Scholar 

  52. Wiech M, Amlund H, Jensen KA, Aldemberg T, Duinker A, Maage A (2018) Tracing simultaneous cadmium accumulation from different uptake routes in brown crab Cancer pagurus by the use of stable isotopes. Aquat Toxicol 201:198–206. https://doi.org/10.1016/j.aquatox.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  53. Bighiu MA, Eriksson-Wiklund AK, Eklund B (2017) Biofouling of leisure boats as a source of metal pollution. Environ Sci Pollut Res Int 24(1):997–1006. https://doi.org/10.1007/s11356-016-7883-7

    Article  CAS  PubMed  Google Scholar 

  54. Rodney E, Herrera P, Luxama J, Boykin M, Crawford A, Carroll MA (2007) Bioaccumulation and tissue distribution of arsenic, cadmium, copper and zinc in Crassostrea virginica grown at two different depths in Jamaica Bay, New York. In Vivo 29(1):16–27

    PubMed  Google Scholar 

  55. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  PubMed  Google Scholar 

  56. Martorell JJ (2010) Biodisponibilidad de metales pesados en dos ecosistemas acuáticos de la costa Suratlántica andaluza afectados por contaminación difusa. Tesis Doctoral Universidad de Cádiz. rodin.uca.es/xmlui/bitstream/handle/10498/15776/Tes_2010_06.pdf

  57. Reyes YC, Vergara I, Torres O, Díaz-Lagos M, González-Jimenez EE (2016) Contaminación por metales pesados: implicaciones en salud, ambiente y seguridad alimentaria. Rev Ing, Investig Des 16(2):66–77. https://doi.org/10.19053/1900771X.v16.n2.2016.5447

    Article  Google Scholar 

  58. Paila RV, Yallapragada PR (2010) Bioaccumulation and toxic effects of copper on growth and oxygen consumption by the postlarvae of Penaeus indicus. Chem Ecol 26(3):209–221. https://doi.org/10.1080/02757541003785809

    Article  CAS  Google Scholar 

  59. Liu J, Cao L, Dou S (2019) Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea. Sci Total Environ 670:508–522. https://doi.org/10.1016/j.scitotenv.2019.03.140

    Article  CAS  PubMed  Google Scholar 

  60. Woody CA, O’Neal, SL (2012) Effects of copper on fish and aquatic resources. The Nature Conservancy, 27p. Available: https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/alaska/sw/cpa/Documents/W2013ECopperF062012.pdf. Accessed 15 July 2020

  61. National Research Council (US) Committee on Copper in Drinking Water. Copper in Drinking Water. Washington (DC): National Academies Press (US); 2000. 5, Health effects of excess copper. Available from: https://www.ncbi.nlm.nih.gov/books/NBK225400

  62. Anandkumar A, Nagarajan R, Prabakaran K, Rajaram R (2017) Trace metal dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak, East Malaysia. Reg Stud Mar Sci 16:79–88. https://doi.org/10.1016/j.rsma.2017.08.007

    Article  Google Scholar 

  63. Çiftçi N, Cicik B, Erdem C, Ay O, Karayakar F, Karaytug S (2011) Accumulation of chromium in hepatopancreas, gill and muscle tissues of Callinectes sapidus. Fresenius Environ Bull 20(4):1089–1092

    Google Scholar 

  64. Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 8p, Article ID 375843. https://doi.org/10.1155/2012/375843

  65. Suteja Y, Dirgayusa IGNP (2018) Bioaccumulation and translocation of chromium on crabs and mangroves in Mati River estuary, Bali, Indonesia. AACL Bioflux 11(2):469–475

    Google Scholar 

  66. Sayyad NR, Khan AK, Ansari NT, Hashmi S, Shaikh MAJ (2007) Heavy metal concentrations in different body part of crab, Barytelphusa guerini from Godavari River. J Ind Pollut Control 23(2):363–368

    CAS  Google Scholar 

  67. Gagneten AM, Imhof A (2009) Chromium (Cr) accumulation in the freshwater crab, Zilchiopsis collastinensis. J Environ Biol 30(3):345–348

    CAS  PubMed  Google Scholar 

  68. Bordon IC, Emerenciano AK, Melo JRC, Silva JRMC, Favaro DIT, Gusso-Choueri PK, Campos BG, Abessa DMS (2018) Implications on the Pb bioaccumulation and metallothionein levels due to dietary and waterborne exposures: the Callinectes danae case. Ecotoxicol Environ Saf 162:415–422. https://doi.org/10.1016/j.ecoenv.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  69. Espejo W, Padilha JA, Gonçalves RA, Dorneles PR, Barra R, Oliveira D, Malm O, Chiang G, Celis JE (2019) Accumulation and potential sources of lead in marine organisms from coastal ecosystems of the Chilean Patagonia and Antarctic Peninsula area. Mar Pollut Bull 140:60–64. https://doi.org/10.1016/j.marpolbul.2019.01.026

    Article  CAS  PubMed  Google Scholar 

  70. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Naboka A, Marenkov O, Kovalchuck J, Shapovalenko Z, Nesterenko O, Dzhobolda B (2018) Parameters of the histological adaptation of Marmorkrebs Procambarus virginalis (Lyko, 2017) (Decapoda, Cambaridae) to manganese, nickel and lead ions pollution. Int Lett Nat Sci 70:24–33. https://doi.org/10.18052/www.scipress.com/ILNS.70.24

    Article  Google Scholar 

  72. Cullen JT, McAlister J (2017) Biogeochemistry of lead. Its release to the environment and chemical speciation. Lead—its effects on environment and chemical speciation. Met Ions Life Sci 17:21–48. https://doi.org/10.1515/9783110434330-002

    Article  CAS  Google Scholar 

  73. Osuna Flores I, Meyer-Willerer AO, Olivos-Ortiz A, Vázquez FJB, Marmolejo-Rodríguez AJ (2014) Lead in shrimp Litopenaeus vannamei Boone in sublethal concentrations. J Toxicol Environ Health Part A Curr Issues 77(18):1084–1090. https://doi.org/10.1080/15287394.2014.905224

    Article  CAS  Google Scholar 

  74. Santos DB, Barbieri E, Bondioli ACV, Melo CB (2014) Effects of lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. O Mundo da Saúde, São Paulo 38(2):16–23. https://doi.org/10.15343/0104-7809.20143801016023

    Article  Google Scholar 

  75. Gagneten AM, Tumini G, Imhof A, Gervasio S (2011) Comparative study of lead accumulation in different organs of the freshwater crab Zilchiopsis oronenesis. Water Air Soil Pollut 223:617–624. https://doi.org/10.1007/s11270-011-0887-5

    Article  CAS  Google Scholar 

  76. Noel L, Chafey C, Testu C, Pinte J, Velge P, Guérin T (2011) Contamination levels of lead, cadmium and mercury in imported and domestic lobsters and large crab species consumed in France: differences between white and brown meat. J Food Compos Anal 24(3):368–375. https://doi.org/10.1016/j.jfca.2010.08.011

    Article  CAS  Google Scholar 

  77. Lavradas RT, Hauser-Davis RA, Lavandier RC, Rocha RC, São Pedro TD, Seixas T, Kehrig HA, Moreira I (2014) Metal, metallothionein and glutathione levels in blue crab (Callinectes sp.) specimens from southeastern Brazil. Ecotoxicol Environ Saf 107:55–60. https://doi.org/10.1016/j.ecoenv.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  78. Tavabe KR, Abkenar BP, Rafiee G, Frinsko M (2019) Effects of chronic lead and cadmium exposure on the oriental river prawn (Macrobrachium nipponense) in laboratory conditions. Comp Biochem Physiol C Toxicol Pharmacol 221:21–28. https://doi.org/10.1016/j.cbpc.2019.03.009

    Article  CAS  Google Scholar 

  79. Costa FN, Korn MGA, Brito GB, Ferlin S, Fostier AH (2016) Preliminary results of mercury levels in raw and cooked seafood and their public health impact. Food Chem 192:837–841. https://doi.org/10.1016/j.foodchem.2015.07.081

    Article  CAS  Google Scholar 

  80. Saadati M, Soleimani M, Sadeghsaba M, Hemami MR (2019) Bioaccumulation of heavy metals (Hg, Cd and Ni) by sentinel crab (Macrophthalmus depressus) from sediments of Mousa Bay, Persian Gulf. Ecotoxicol Environ Saf 191:109986. https://doi.org/10.1016/j.ecoenv.2019.109986

    Article  CAS  PubMed  Google Scholar 

  81. Hosseini M, Nabavi SMB, Parsa Y, Nabavi SN (2014) Mercury accumulation in food chain of fish, crab and sea bird from Arvand River. J Mar Sci Res, 4:14. DOI: https://doi.org/10.4172/2155-9910.1000148

  82. Hosseini M, Porur SR, Baniamam N, Amiri AMD (2014) Mercury levels in selected tissues of shrimp Panaeus merguiensis from persian gulf. Indian J Geo-Mar Sci 44(7):1025–1034. https://doi.org/10.1007/s10661-014-3793-7

    Article  CAS  Google Scholar 

  83. Chen CY, Borsuk ME, Bugge DM, Hollweg T, Balcom PH, Ward DM, Willians J, Manson RP (2014) Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States. PLoS One 9(2):e89305. https://doi.org/10.1371/journal.pone.0089305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Evers DC, Mason RP, Kamman NC, Chen CY, Bogomolni AL, Taylor DL, Hammerschmidt CR, Jones SH, Burgess NM, Munney K, Parsons KC (2008) Integrated mercury monitoring program for temperate estuarine and marine ecosystems on the North American Atlantic coast. Ecohealth 5(4):426–441. https://doi.org/10.1007/s10393-008-0205-x

    Article  PubMed  Google Scholar 

  85. Taylor DL, Calabrese NM (2018) Mercury content of blue crabs (Callinectes sapidus) from southern New England coastal habitats: contamination in an emergent fishery and risks to human consumers. Mar Pollut Bull 126:166–178. https://doi.org/10.1016/j.marpolbul.2017.10.089

    Article  CAS  PubMed  Google Scholar 

  86. Dong W, Liu J, Wei L, Jingfeng Y, Chernick M, Hinton DE (2016) Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. Peer J 4:e2282. https://doi.org/10.7717/peerj.2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reinhart BL, Kidd KA, Curry RA, O'driscoll NJ, Pavey SA (2018) Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary. J Environ Sci:1–14. https://doi.org/10.1016/j.jes.2018.02.024

  88. Wang R, Wong MH, Wang WX (2010) Mercury exposure in the freshwater tilapia Oreochromis niloticus. Environ Pollut 15(8):2694–2701. https://doi.org/10.1016/j.envpol.2010.04.019

    Article  CAS  Google Scholar 

  89. Costa BNS, Almeida HP, Silva BCP, Figueiredo LG, Oliveira AM, Lima MO (2019) Macrobrachium amazonicum (Crustacea, Decapoda) Used to biomonitor mercury contamination in rivers. Arch Environ Contam Toxicol 78:245–253. https://doi.org/10.1007/s00244-019-00683-0

    Article  CAS  PubMed  Google Scholar 

  90. Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) (2000) Australian and New Zealand guidelines for fresh and marine water quality. Aquatic ecosystems- rationale and background information. Vol2. 678p

  91. Blewett TA, Glover CN, Fehsenfeld S, Lawrence MJ, Niyogi S, Goss GG, Wood CM (2015) Making sense of nickel accumulation and sub-lethal toxic effects in saline waters: fate and effects of nickel in the green crab, Carcinus maenas. Aquat Toxicol 164:23–33. https://doi.org/10.1016/j.aquatox.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  92. Bianchini A, Playle RC, Wood CM, Walsh PJ (2005) Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol 72(1-2):67–82. https://doi.org/10.1016/j.aquatox.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  93. Revenga JE, Campbell LM, Kyser K, Klassen K, Arribére MA, Ribeiro Guevara S (2011) Trophodynamics and distribution of silver in a Patagonia Mountain lake. Chemosphere 83(3):265–270. https://doi.org/10.1016/j.chemosphere.2010.12.072

    Article  CAS  PubMed  Google Scholar 

  94. Bianchini A, Playle RC, Wood CM, Walsh PJ (2007) Short-term silver accumulation in tissues of three marine invertebrates: shrimp Penaeus duorarum, sea hare Aplysia californica, and sea urchin Diadema antillarum. Aquat Toxicol 84(2):182–189. https://doi.org/10.1016/j.aquatox.2007.02.021

    Article  CAS  PubMed  Google Scholar 

  95. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1):89–108. https://doi.org/10.1002/etc.5620180112

    Article  CAS  Google Scholar 

  96. Hadrup N, Sharma AK, Loeschner K (2018) Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol 98:257–267. https://doi.org/10.1016/j.yrtph.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  97. Ololade IA, Lajide L, Olumekun VO, Ololade OO, Ejelonu BC (2011) Influence of diffuse and chronic metal pollution in water and sediments on edible seafoods within Ondo oil-polluted coastal region, Nigeria. J Environ Sci Health A Tox Hazard Subst Environ Eng 46(8):898–908. https://doi.org/10.1080/10934529.2011.580208

    Article  CAS  PubMed  Google Scholar 

  98. Zhao Y, Kang X, Shang D, Zhai Y, Ning J, Ding H, Sheng X (2019) Study of Cd content distribution and its bioaccessibility in edible tissues of crab Portunus trituberculatus from the Coastal Area of Shandong, China. Biol Trace Elem Res 197(8). https://doi.org/10.1007/s12011-019-01968-0

  99. Genç TO, Yilmaz F (2015) Bioaccumulation indexes of metals in blue crab inhabiting specially protected area Koycegiz Lagoon (Turkey). Indian J Anim Sci 85(1):994–999

    Google Scholar 

  100. Corrêa JD, da Silva MR, da Silva ACB, de Lima SMA, Malm O, Allodi S (2005) Tissue distribution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus. Aquat Toxicol 73(2):139–154. https://doi.org/10.1016/j.aquatox.2005.03.005

    Article  CAS  PubMed  Google Scholar 

  101. Krishnakumar PK, Qurban M, Stiboller M, Nachman KE, Joydas TV, Kandan M, Shemsi A, Francesconi KA (2016) Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment. Sci Total Eviron 566-567:1235–1244. https://doi.org/10.1016/j.scitotenv.2016.05.180

    Article  CAS  Google Scholar 

  102. Rajkumar JSI (2013) Arsenic effects on growth parameters of Indian prawn, Panaeus indicus. Int Food Res J 20(6):3009–3011

    Google Scholar 

  103. Padmanaban AM, Kannan M (2013) Sub lethal effects of cadmium on testicular and ovarian maturation in fresh water crab Paratelphusa hydrodromous. Int J Pharm Sci Rev Res 23(8):43–46

    CAS  Google Scholar 

  104. Ma D, Wu H, Lei W, Du L (2013) Effects of acute cadmium on sperm quality of Sinopotamon henanense. Huan jing kexue xuebao/Acta Scientiae Circumstantie 33(7):2044–2049

    CAS  Google Scholar 

  105. Liu Z, Lv W, Huang Y, Fan B, Li Y, Zhao Y (2016) Effects of cadmium on lipid metabolism in female estuarine crab, Chiromantes dehaani. Comp Biochem Physiol C Toxicol Pharmacol 188:9–16. https://doi.org/10.1016/j.cbpc.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  106. Luo J, Pei S, Jing W, Zou E, Wang L (2015) Cadmium inhibits molting of the freshwater crab Sinopotamon henanense by reducing the hemolymph ecdysteroid content and the activities of chitinase and N-acetyl-β-glucosaminidase in the epidermis. Comp Biochem Physiol C: Toxicol Pharmacol 169:1–6. https://doi.org/10.1016/j.cbpc.2014.10.003

    Article  CAS  Google Scholar 

  107. Lei W, Wang L, Liu D, Xu T, Luo J (2011) Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense. Chemosphere 84(5):689–694. https://doi.org/10.1016/j.chemosphere.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  108. McIntyre JK, Baldwin DH, Beauchamp DA, Scholz NL (2012) Low-level copper exposures increase visibility and vulnerability of juvenile Coho salmon to cutthroat trout predators. Ecol Appl 22(5):1460–1471. https://doi.org/10.1890/11-2001.1

    Article  PubMed  Google Scholar 

  109. Kwan CK, Sanford E, Long J (2015) Copper pollution increases the relative importance of predation risk in an aquatic food web. PLoS One 10(7):e0133329. https://doi.org/10.1371/journal.pone.0136006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maharajan A, Vaseeharan B, Rajalakshmi S, Vijayakumaran M, Kumarasamy P, Chen JC (2011) Effect of copper on morphology, weight, and chromosomal aberrations in the spiny lobster, Panulirus homarus (Linnaeus, 1758). Biol Trace Elem Res 144(1-3):769–780. https://doi.org/10.1007/s12011-011-9110-1

    Article  CAS  PubMed  Google Scholar 

  111. Xu XH, Meng X, Gan HT, Liu TH, Yao HY, Zhu XY, Xu GC, Xu JT (2019) Immune response, MT and HSP70 gene expression, and bioaccumulation induced by lead exposure of the marine crab, Charybdis japonica. Aquat Toxicol 210:98–105. https://doi.org/10.1016/j.aquatox.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  112. Liu N, Wang L, Yan B, Li Y, Ye F, Li J, Wang Q (2014) Assessment of antioxidant defense system responses in the hepatopancreas of the freshwater crab Sinopotamon henanense exposed to lead. Hydrobiologia 741:3–12. https://doi.org/10.1007/s10750-014-1806-8

    Article  CAS  Google Scholar 

  113. Lepak JM, Hooten MB, Eagles-Smith CA, Tate MT, Lutz MA, Ackerman JT et al (2016) Assessing potential health risks to fish and humans using mercury concentrations in inland fish from across western Canada and the United States. Sci Total Environ 571:342–354. https://doi.org/10.1016/j.scitotenv.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  114. Richter CA, Garcia-Reyero N, Martyniuk C, Knoebl I, Pope M, Wright-Osment MK et al (2011) Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury. Environ Toxicol Chem 30(2):301–308. https://doi.org/10.1002/etc.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Naïja A, Marchand J, Kestemont P, Haouas Z, Blust R, Chénais B et al (2016) Mercury accumulation and its effects on molecular, physiological, and histopathological responses in the peacock blenny Salaria pavo. Environ Sci Pollut Res Int 23(21):22099–22115. https://doi.org/10.1007/s11356-016-7401-y

    Article  CAS  PubMed  Google Scholar 

  116. Safahieh A, Hedayati A, Savari A, Movahedinia A (2012) Effect of sublethal dose of mercury toxicity on liver cells and tissue of yellowfin seabream. Toxicol Ind Health 28(7):583–592. https://doi.org/10.1177/0748233711416951

    Article  CAS  PubMed  Google Scholar 

  117. Rasinger JD, Lundebye AK, Penglase SJ, Ellingsen S, Amlund H (2017) Methylmercury induced neurotoxicity and the influence of selenium in the brains of adult Zebrafish (Danio rerio). Int J Mol Sci 18(4):725. https://doi.org/10.3390/ijms18040725

    Article  CAS  PubMed Central  Google Scholar 

  118. Hatef A, Alavi SM, Butts IA, Policar T, Linhart O (2011) Mechanism of action of mercury on sperm morphology, adenosine triphosphate content, and motility in Perca fluviatilis (Percidae; Teleostei). Environ Toxicol Chem 30(4):905–914. https://doi.org/10.1002/etc.461

    Article  CAS  PubMed  Google Scholar 

  119. Nowosad J, Kucharczyk D, Łuczyńska J (2018) Changes in mercury concentration in muscles, ovaries and eggs of European eel during maturation under controlled conditions. Ecotoxicol Environ Saf 148:857–861. https://doi.org/10.1016/j.ecoenv.2017.11.066

    Article  CAS  Google Scholar 

  120. Nagarjuna A, Karthikeyan P, Marigoudar SR, Sharma KV (2019) Effect of sublethal gradient concentrations of nickel on postlarvae of Penaeus monodon, Perna viridis and Terapon jarbua: Enzyme activities and histopathological changes. Chemosphere 124428. https://doi.org/10.1016/j.chemosphere.2019.124428

  121. Igbokwe, Igwenagu E (2019) Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 12(2):45–70. https://doi.org/10.2478/intox-2019-0007

    Article  CAS  PubMed  Google Scholar 

  122. Leffers L, Unterberg M, Bartel M, Hoppe C, Pieper I, Stertmann J, Ebert F, Humpf HU, Schwerdtle T (2013) In vitro toxicological characterisation of the S-containing arsenic metabolites thio-dimethylarsinic acid and dimethylarsinic glutathione. Toxicol 305:109–119. https://doi.org/10.1016/j.tox.2013.01.007

    Article  CAS  Google Scholar 

  123. Meyer S, Matissek M, Muller SM, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T (2014) In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics 6(5):1023–1033. https://doi.org/10.1039/c4mt00061g

    Article  CAS  PubMed  Google Scholar 

  124. Meyer S, Raber G, Ebert F, Leffers L, Muller SM, Taleshi MS, Francesconi KA, Schwerdtle T (2015) In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites. Toxicol Res 4(5):1289–1296. https://doi.org/10.1039/c5tx00122f

    Article  CAS  Google Scholar 

  125. Kato LS, de Nadai Fernandes EA, Raab A, Bacchi MA, Feldmann J (2019) Arsenic and cadmium contents in Brazilian rice from different origins can vary more than two orders of magnitude. Food Chem 286:644–650. https://doi.org/10.1016/j.foodchem.2019.02.043

    Article  CAS  PubMed  Google Scholar 

  126. Mandal U, Singh P, Kundu AK, Chatterjee D, Nriagu J, Bhowmick S (2019) Arsenic retention in cooked rice: effects of rice type, cooking water, and indigenous cooking methods in West Bengal, India. Sci Total Environ 648:720–727. https://doi.org/10.1016/j.scitotenv.2018.08.172

    Article  CAS  PubMed  Google Scholar 

  127. Mantha M, Yeary E, Trent J et al (2017) Estimating inorganic arsenic exposure from U.S. rice and total water intakes. Environ Health Perspect 125(5):057005. https://doi.org/10.1289/EHP418

    Article  PubMed  PubMed Central  Google Scholar 

  128. Choi CY, Park G, B YS, Jeon MJ, Choi KH, Sakong J (2016) The association between blood cadmium level, frequency and amount of gejang (marinated crab) intake. Ann Occup Environ Med 28:23. https://doi.org/10.1186/s40557-016-0109-0

    Article  PubMed  PubMed Central  Google Scholar 

  129. Aimola P, Carmignani M, Volpe AR, Di Benedetto A, Claudio L, Waalkes MP, van Bokhoven A, Tokar EJ, Claudio PP (2012) Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLoS One 7:e33647. https://doi.org/10.1371/journal.pone.0033647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ma J, Betts NM (2000) Zinc and copper intakes and their major food sources for older adults in the 1994–96 Continuing Survey of Food Intakes by Individuals (CSFII). J Nutr 130(11):2838–2843. https://doi.org/10.1093/jn/130.11.2838

    Article  CAS  PubMed  Google Scholar 

  131. Jerome FC, Chukwuka AV (2016) Metal residues in flesh of edible blue crab, Callinectes amnicola, from a tropical coastal lagoon: health implications. Hum Ecol Risk Assess 22(8):1708–1725. https://doi.org/10.1080/10807039.2016.1219220

    Article  CAS  Google Scholar 

  132. Santos LFP, Trigueiro INS, Lemos VA, Furtunato DMN, Cardoso RCV (2013) Assessment of cadmium and lead in commercially important seafood from São Francisco do Conde, Bahia, Brazil. Food Control 33(1):193–199. https://doi.org/10.1016/j.foodcont.2013.02.024

    Article  CAS  Google Scholar 

  133. Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64. https://doi.org/10.1515/intox-2015-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lackner J, Weiss M, Muller-Graf C, Greiner M (2018) Disease burden of methylmercury in the German birth cohort 2014. PLoS One 13(1):e0190409. https://doi.org/10.1371/journal.pone.0190409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brown IA, Austin DW (2012) Maternal transfer of mercury to the developing embryo/fetus: is there a safe level? Toxicol Environ Chem 94(8):1610–1627. https://doi.org/10.1080/02772248.2012.724574

    Article  CAS  Google Scholar 

  136. Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T (2007) Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci 262(1–2):131–144. https://doi.org/10.1016/j.jns.2007.06.036

    Article  CAS  PubMed  Google Scholar 

  137. Giri S, Singh AK (2014) Human health risk and ecological risk assessment of metals in fishes, shrimps and sediment from a tropical river. Int J Environ Sci Technol 12(7):2349–2362. https://doi.org/10.1007/s13762-014-0600-5

    Article  CAS  Google Scholar 

  138. Marmelo I, Barbosa V, Maulvault AL, Duarte MP, Marques A (2019) Does the addition of ingredients affect mercury and cadmium bioaccessibility in seafood-based meals? Food Chem Toxicol 136:110978. https://doi.org/10.1016/j.fct.2019.110978

    Article  CAS  PubMed  Google Scholar 

  139. Food and Agriculture Organization/Word Oraganization Health (FAO/WHO) (2011) Evaluation of certain food additives and contaminants, Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011

  140. United States Environmental Protection Ambietal (USEPA) (2007) Tolerable daily intake by metals. Available in: http://www.popstoolkit.com/tools/HHRA/TDI_USEPA.aspx. Switzerland, 2007

  141. Food and Agriculture Organization/Word Oraganization Health (FAO/WHO) (1982) Evaluation of certain food additives and contaminants, Twenty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 1982

  142. Australia and New Zealand Food Authority (2000) Provisional regulation limitation of contamination in food, specifications and standards for foods, food additives, etc. Under the food sanitation laws, April 2004, Standard 1.4.1, Contamination and natural toxicants, maximum level of metal contaminates in food, Australia and New Zealand Food Authority Amendment no.53 to Food Standard Code, Commonwealth of Australia, 2000

  143. ANVISA, Ministério da Saúde, Agência Nacional de Vigilância SanitE1ria. RDC n 42 de 29 de agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgánicos em Alimentos. Diário Oficial [da] República Federativa do Brasil; Brasília, Brazil: Aug 29, 2013

  144. China’s Maximium Levels for Contamination in Foods(CMLCF) (2014). National food safety standard of maximum levels of contaminants in foods (GB 2762-2014). Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Maximum%20Levels%20of%20Contaminants%20in%20Foods%20_Beijing_China%20-%20Peoples%20Republic%20of_12-11-2014.pdf. Accessed 29 July 2020

  145. European Commission (2005) Commission Regulation (EC) No 78/2005 of 19 January 2005 amending Regulation (EC) No 466/2001 as regards heavy metals. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:016:0043:0045:EN:PDF. Accessed 26 August 2020

  146. Food and Agriculture Organization (FAO) (2003) Food and Agriculture Organization (FAO) Heavy metal regulations—Faolex. Legal Notice No.66/2003.

  147. Food and Drug Administration (1993a) Guidance document for arsenic in shellfish. U.S. Department of Health and Human Services, Public Health Service, Office of Seafood (HFS416), 200 C Street, SW, Washington, DC 20204. 44 pages.

  148. Food and Drug Administration (1993b) Guidance document for cadmium in shellfish. U.S. Department of Health and Human Services, Public Health Service, Office of Seafood (HFS416), 200 C Street, SW, Washington, D.C. 20204. 44 pages.

  149. Food and Drug Administration (1993c) Guidance document for chromium in shellfish. U.S. Department of Health and Human Services, Public Health Service, Office of Seafood (HFS416), 200 C Street, SW, Washington, D.C. 20204. 40 pages.

  150. Food and Drug Administration (1993d) Guidance document for lead in shellfish. U.S. Department of Health and Human Services, Public Health Service, Office of Seafood (HFS416), 200 C Street, SW, Washington, D.C. 20204. 45 pages.

  151. Food and Drug Administration (1993e) Guidance document for nickel in shellfish. U.S. Department of Health and Human Services, Public Health Service, Office of Seafood (HFS416), 200 C Street, SW, Washington, D.C. 20204. 39 pages.

  152. Food and Drug Administration (2001) Fish and fisheries products hazards & controls guidance, Third Edition. U.S. Department of Health and Human Services, Public Health Service, Office of Seafood, 5100 Paint Branch Parkway, College Park, Maryland 20740-3835. 326 pages.

  153. Center of Food Safety (CSF) Hong Kong, Food legislation/guidelines, part V (food and drugs) of the public health and municipal services ordinance (Cap. 132). Food adulteration (MetallicContaminatio) regulations, 2018. Available: https://www.cfs.gov.hk/english/food_leg/food_leg_mc.html. Accessed 12 July 2020.

  154. Korea Ministry of Food and Drug Safety. 2013. Korea food code. Available at: http://fse.foodnara.go.kr/residue/RS/jsp/menu_02_01_Ol.jsp. Accessed 10 July 2020.

  155. South African Department of Health (DOH), Foodstuffs, cosmetics and disinfectants act, 1972 (Act no. 54 of 1972). Government Gazette No. R. 500 (2004) Available: http://web.crownfood.co.za/wp-content/uploads/2017/07/Maximum-levels-for-Metals-in-Foodstuffs-R500.pdf . Accessed 10 July 2020.

  156. Food Standards Agency (FSA) UK, Chemical contaminant monitoring. Limit for chemical contaminants, 2020 Available: https://www.food.gov.uk/business-guidance/chemical-contaminant-monitoring. Accessed 10 July 2020.

  157. Kopec AD, Kidd KA, Fisher NS, Bowen M, Francis C, Payne K, Bodaly RA (2019) Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant. Sci Total Environ 649:770–791. https://doi.org/10.1016/j.scitotenv.2018.08.203

    Article  CAS  PubMed  Google Scholar 

  158. Perugini M, Zezza D, Tulini SMR, Abete MC, Monaco G, Conte A, Olivieri V, Amorena M (2016) Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Mar Pollut Bull 109(1). https://doi.org/10.1016/j.marpolbul.2016.05.010

  159. Koenig S, Solé M, Fernández-Gómez C, Díez S (2013) New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications. Sci Total Environ 442:329–335. https://doi.org/10.1016/j.scitotenv.2012.10.036

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Materials

The datasets supporting the conclusions of this article are included within the article and its additional files.

Funding

Fundação de Amparo à Pesquisa no Estado do Rio de Janeiro, E-26/201.167/2020.

Author information

Authors and Affiliations

Authors

Contributions

Paloma A. Rodrigues: investigation, data curation, conceptualization, methodology, and writing—original draft preparation. Rafaela G. Ferrari: writing—draft preparation, conceptualization, reviewing, and editing. Lilian S. Kato: reviewing. Rachel A Houser-Davis: reviewing. Carlos A. Conte-Junior: reviewing and supervision.

Corresponding author

Correspondence to Rafaela Gomes Ferrari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Rodrigues, P., Ferrari, R.G., Kato, L.S. et al. A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators. Biol Trace Elem Res 200, 881–903 (2022). https://doi.org/10.1007/s12011-021-02685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02685-3

Keywords

Navigation