Skip to main content
Log in

Macrobrachium amazonicum (Crustacea, Decapoda) Used to Biomonitor Mercury Contamination in Rivers

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Open-air landfill’s may be are considered as a potential source of human environmental exposure to chemical substances such as, polycyclic aromatic hydrocarbons and toxic metals. Due to possible availability of mercury in the environment caused by open landfill emissions, this study evaluates the spatiality and seasonality of macroinvertebrates, in particular shrimps (Macrobrachium amazonicum), exposure to mercury (Hg). Information regarding Hg accumulation in this crustacean may be important for the development of public policies aiming conservation and preservation of ecosystems surrounding landfills in Amazon, and around the world. Sampling occurred quarterly in the following months: November/2015; February/2016; May/2016 and; August/2016. In each of these months, three points were selected: P1, P2 and P3. The samples were processed via acid digestion and the quantification of metal was performed by inductively coupled plasma mass spectrometry. The average concentration of total mercury (T-Hg) was 24.565 ± 6.610 µg kg−1 wet weight, with minimum and maximum limits of 12.742 ± 11.367 (P3) and 35.509 ± 14.761 µg kg−1 wet weight (P1) in November/2015 and August/2016, respectively. The concentration of total mercury (T-Hg) in shrimps was different between points (p = 0.004) and months (p = 0.000). The T-Hg concentrations were significantly higher in May and August 2016, which corresponds to the dry season. The presence of landfills promotes large accumulation of T-Hg in the aquatic biota and represents a risk to human health. However, seasonal changes in T-Hg levels were observed. In the wettest period, bioconcentration factor levels decrease in aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertoni EF, Palma-silva C, Esteves FDA (2002) Distribution and growth in adults of Macrobrachium acanthurus Wiegmann, (Decapoda, Palaemonidae) in a tropical coastal lagoon, Brazil. Rev Bras Zool 19(2):61–70

    Article  Google Scholar 

  • ANVISA. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC No 42, de 29 de Agosto de 2013, p 17

  • Bentes B, Martinelli J, Souza L, Cavalcante D, Almeida M, Isaac V (2011) Spatial distribution of the amazon river prawn Macrobrachium amazonicum (Heller, 1862) (Decapoda, Caridea, Palaemonidae) in two perennial creeks of an estuary on the northern coast of Brazil (Guajará Bay, Belém, Pará). Braz J Biol 71(4):925–935

    Article  Google Scholar 

  • Bentes BS, Silva JCS, Martinelli-lemos JM, Nahum VJI (2016) Abundance and morphometric relationships of Amazon shrimp: Macrobrachium amazonicum (Heller 1862) (Decapoda, Palaemonidae)—in an Amazon estuary—North coast of Brazil. Biota Amaz 6(4):1–9

    Article  Google Scholar 

  • Bialetzki A, Nakatani K, Baumgartner G, Bond-Buckup G (1997) Occurrence of Macrobrachium amazonicum (heller) (Decapoda, Palaemonidae) ln leopoldo’s inlet (ressaco do leopoldo), upper paraná river, Porto Rico, Paraná, Brazil. Rev Bras Zool 14(2):379–390

    Article  Google Scholar 

  • Bisinoti MC, Jardim WF (2004) O comportamento do metilmercúrio (METILHg) no ambiente. Quim Nova 27(4):593–600

    Article  CAS  Google Scholar 

  • Borrell A, Tornero V, Bhattacharjee D, Aguilar A (2016) Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci Total Environ [Internet] 545–546:414–423

    Article  Google Scholar 

  • de Souza Azevedo J, de Souza Sarkis JE, Oliveira TA, Ulrich JC (2012) Tissue-specific mercury concentrations in two catfish species from the Brazilian coast. Braz J Oceanogr 60(2):211–219

    Google Scholar 

  • De Souza EB, Carmo AMC, Moraes BC, Nacif A, Ferreira DB da S, Rocha EJP et al (2016) Revista Brasileira de Climatologia 18:293–306

    Google Scholar 

  • Delgado-alvarez CG, Ruelas-inzunza J, Osuna-lópez JI, Voltolina D, Frías-espericueta MG (2015) Mercury content and their risk assessment in farmed shrimp Litopenaeus vannamei from NW Mexico. Chemosphere 119:1015–1020

    Article  CAS  Google Scholar 

  • Du B, Li P, Feng X, Qiu G, Zhou J, Maurice L (2016) Mercury exposure in children of the wanshan mercury mining area, Guizhou, China. Int J Environ Res Public Health 13(11)

    Article  Google Scholar 

  • Frías-Espericueta MG, Ramos-Magaña BY, Ruelas-Inzunza J, Soto-Jiménez MF, Escobar-Sánchez O, Aguilar-Juárez M et al (2016) Mercury and selenium concentrations in marine shrimps of NW Mexico: health risk assessment. Environ Monit Assess [Internet]. https://doi.org/10.1007/s10661-016-5645-0

    Article  Google Scholar 

  • Giusti L (2009) A review of waste management practices and their impact on human health. Waste Manag [Internet] 29(8):2227–2239. https://doi.org/10.1016/j.wasman.2009.03.028

    Article  CAS  Google Scholar 

  • Gouveia N, Prado RR (2010) Riscos à saúde em áreas próximas a aterros de resíduos sólidos urbanos. Rev Saúde Pública 44(5):859–866

    Article  Google Scholar 

  • Hoang VAT, Sakamoto M, Yamamoto M (2017) Mercury and selenium levels, and their molar ratios in several species of commercial shrimp in Japan regarding the health risk of methylmercury exposure. J Toxicol Sci 42(4):509–517

    Article  CAS  Google Scholar 

  • Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health 12(3):206–223

    Article  CAS  Google Scholar 

  • Kehrig HA, Malm O, Palermo EFA, Seixas TG, Baêta AP, Moreira I (2011) Bioconcentração e biomagnificação de metilmercúrio na baía de guanabara, Rio de Janeiro. Quim Nova 34(3):377–384

    Article  CAS  Google Scholar 

  • Kinjo Y, Akiba S, Yamguchi N, Mizuno S, Watanabe S, Wakamiya J et al (1996) Cancer mortality in Minamata disease patients exposed to methylmercury through fish diet. J Epidemiol 6:134–138

    Article  CAS  Google Scholar 

  • Lima J de F, Santos T dos S e (2014) Aspectos econômicos e higiênico-sanitários da comercialização de camarões de água doce em feiras livres de Macapá e Santana, Estado do Amapá. Biota Amaz 4(1):1–8

    Article  Google Scholar 

  • Loureiro RSDE, Saraiva JM, Saraiva I, Cruz R, Fredó AS (2014) Estudo dos eventos extremos de precipitação ocorridos em 2009 no estado do pará. Rev Nrasileira Metereologia 29:83–94

    Article  Google Scholar 

  • Lu X, Jaffe R (2001) Interaction between Hg(II) and natural dissolved organic matter: a fluorescence spectroscopy-based study. Water Res 35(7):1793–1803

    Article  CAS  Google Scholar 

  • Machado W, Sanders CJ, Santos IR, Sanders LM, Silva-filho EV, Luiz-silva W (2016) Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland. Environ Pollut 213:30–35

    Article  CAS  Google Scholar 

  • Maciel CR, Valenti WC (2009) Biology, fisheries, and aquaculture of the Amazon River prawn Macrobrachium amazonicum: a review. Nauplius 17(2):61–79

    Google Scholar 

  • Matos FO, Moura QL, Conde GB, Morales GP, Brasil EC (2011) Impactos ambientais decorrentes do aterro sanitário da região metropolitana de Belém-PA: aplicação de ferramentas de melhoria ambiental. Caminhos Geogr Uberlândia. 12(set(39)):297–305

    Google Scholar 

  • Nagunuma A, Furuchi T, Hwang G-W, Kuge S (2002) Investigation of intracellular factors involved in methylmercury toxicity. Tohoku J Exp Med 196:65–71

    Article  Google Scholar 

  • Rahimi E, Gheysari E (2016) Evaluation of lead, cadmium, arsenic, and mercury heavy metal residues in fish, shrimp, and lobster samples from Persian Gulf. KAFKAS Univ Vet Fak Derg 22(2):173–178

    Google Scholar 

  • Rice KM Jr, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Heal 47:74–83

    Article  Google Scholar 

  • Santos SN, Lafon JM, Corrêa JAM, Babinski M, Dias FF, Taddei MHT (2012) Distribuição e assinatura isotópica de Pb em sedimentos de fundo da foz do Rio Guamá e da Baía do guajará (Belém - Pará). Quim Nova 35(2):249–256

    Article  CAS  Google Scholar 

  • Shah AQ, Kazi TG, Arain MB, Jamali MK, Afridi HI, Jalbani N et al (2009) Accumulation of arsenic in different fresh water fish species: potential contribution to high arsenic intakes. Food Chem 112:520–524

    Article  CAS  Google Scholar 

  • Silva RC, Jacobucci GB, Mossolin EC (2017) Reproductive biology of Macrobrachium amazonicum (Heller, 1862) (Decapoda: Palaemonidae) in a reservoir situated in Minas Gerais State, southeastern Brazil. Lat Am J Aquat Res 45(4):776–786

    Article  Google Scholar 

  • Siqueira GW, Aprile F (2013) Avaliação de risco ambiental por contaminação metálica e material orgânico em sedimentos da bacia do Rio Aurá, Região Metropolitana de Belém - PA. Acta Amaz [Internet] 43(1):51–61

    Article  Google Scholar 

  • Wang YQW (2016) Comparison of mercury bioaccumulation between wild and mariculture food chains from a subtropical bay of Southern China. Environ Geochem Health 38:39–49

    Article  Google Scholar 

  • Wang W, Rainbow PS (2008) Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp Biochem Physiol C 148(4):315–323

    Google Scholar 

  • Wantzen KM, Callil C, Butakka CMM (2011) Benthic invertebrates of the Pantanal. In: The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland, pp 127–41

Download references

Acknowledgments

The authors express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Federal University of Pará (UFPA) & Evandro Chagas Institute (IEC) for funding the work and for providing laboratory support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Natasha Souza Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, B.N.S., Almeida, H.P., da Silva, B.C.P. et al. Macrobrachium amazonicum (Crustacea, Decapoda) Used to Biomonitor Mercury Contamination in Rivers. Arch Environ Contam Toxicol 78, 245–253 (2020). https://doi.org/10.1007/s00244-019-00683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00683-0

Navigation