Skip to main content
Log in

Effect of Selenium on Brain Injury in Chickens with Subacute Arsenic Poisoning

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of different doses of selenium (Se) on oxidative damage and neurotransmitter-related parameters in arsenic (As)-induced broiler brain tissue damage. Two hundred 1-day-old avian broilers were randomly divided into five groups and fed the following diets: control group (As 0.1 mg/kg + Se 0.2 mg/kg), As group (As 3 mg/kg + Se 0.2 mg/kg), low-Se group (As 3 mg/kg + Se 5 mg/kg), medium-Se group (As 3 mg/kg + Se 10 mg/kg), and high-Se group (As 3 mg/kg + Se 15 mg/kg). Glutathione (GSH), glutathione peroxidase (GSH-PX), nitric oxide (NO), nitric oxide synthase (NOS) activity, glutamate (Glu) concentration, glutamine synthetase (GS) activity, acetylcholinesterase (TchE) activity, and the apoptosis rate of brain cells were measured. The results showed that 3 mg/kg dietary As could induce oxidative damage and neurotransmitter disorder of brain tissue, increase the apoptosis rate of brain cells and cause damage to brain tissue, decrease activities of GSH and GSH-PX, decrease the contents of NO, decrease the activities of iNOS and tNOS, increase contents of Glu, and decrease activities of Gs and TchE. Compared with the As group, the Se addition of the low-Se and medium-Se groups protected against As-induced oxidative damage, neurotransmitter disorders, and the apoptosis rate of brain cells, with the addition of 10 mg/kg Se having the best effect. However, 15 mg/kg Se not only did not produce a protective effect against As damage but actually caused similar or severe damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235. https://doi.org/10.1016/S0039-9140(02)00268-0

    Article  CAS  PubMed  Google Scholar 

  2. Zhou H, Liu Y, Tan XJ, Wang YC, Liu KY, Cui YX (2015) Inhibitory effect of arsenic trioxide on neuronal migration in vitro and its potential molecular mechanism. Environ Toxicol Pharmacol 40(3):671–677. https://doi.org/10.1016/j.etap.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  3. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  PubMed  Google Scholar 

  4. Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in Ground Water of the United States: Occurrence and Geochemistry. Groundw 38(4):589–604. https://doi.org/10.1111/j.1745-6584.2000.tb00251.x

    Article  CAS  Google Scholar 

  5. Khullar S, Reddy MS (2020) Arsenic toxicity and its mitigation in ectomycorrhizal fungus Hebeloma cylindrosporum through glutathione biosynthesis. Chemosphere 240(Feb.):124914. https://doi.org/10.1016/j.chemosphere.2019.124914

    Article  CAS  PubMed  Google Scholar 

  6. Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Sci 328(5982):1123–1127. https://doi.org/10.1126/science.1172974

    Article  CAS  Google Scholar 

  7. Ralston NV, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278(1):112–123. https://doi.org/10.1016/j.tox.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  8. Duffield-Lillico AJ, Dalkin BL, Reid ME, Turnbull BW, Slate EH, Jacobs ET, Marshall JR, Clark LC, Nutritional Prevention of Cancer Study G (2003) Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. BJU Int 91(7):608–612. https://doi.org/10.1046/j.1464-410x.2003.04167.x

    Article  CAS  PubMed  Google Scholar 

  9. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  10. Wellen CC, Shatilla NJ, Carey SK (2015) Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada. Sci Total Environ 532:791–802. https://doi.org/10.1016/j.scitotenv.2015.06.040

    Article  CAS  PubMed  Google Scholar 

  11. Huang W (2008) Immunotoxicity of selenium antagonistic fluoride to chicken. Northeast Agricultural University. CNKI:CDMD:2.2008.144956

  12. Wang Q (2009) Mechanism of immunosuppression induced by selenium deficiency in chickens. Northeast Agricultural University. https://doi.org/10.7666/d.d072592.

  13. Xu X, Li S, Hou R (2000) Experimental Research of Toxicity of As2O3 in Broiler. Heilongjiang animal husbandry and veterinary 6:18–18. https://doi.org/10.3969/j.issn.1004-7034.2000.06.012

    Article  Google Scholar 

  14. Ren Z, Deng H, Deng Y, Tang W, Wu Q, Zuo Z, Cui H, Hu Y, Yu S, Xu SY, Deng J (2020) Effects of Selenium on Arsenic-Induced Liver Lesions in Broilers. Biol Trace Elem Res 7:1080–1089. https://doi.org/10.1007/s12011-020-02222-8

    Article  CAS  Google Scholar 

  15. Jiang S, Su J, Yao S, Zhang Y, Cao F, Wang F, Wang H, Li J, Xi S (2014) Fluoride and arsenic exposure impairs learning and memory and decreases mGluR5 expression in the hippocampus and cortex in rats. PLoS One 9(4):e96041. https://doi.org/10.1371/journal.pone.0096041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gawronski JD, Benson DR (2004) Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection. Anal Biochem 327(1):114–118. https://doi.org/10.1016/j.ab.2003.12.024

    Article  CAS  PubMed  Google Scholar 

  17. Agrawal S, Bhatnagar P, Flora SJ (2015) Changes in tissue oxidative stress, brain biogenic amines and acetylcholinesterase following co-exposure to lead, arsenic and mercury in rats. Food Chem Toxicol 86(2):208–216. https://doi.org/10.1016/j.fct.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  18. Chandravanshi LP, Gupta R, Shukla RK (2018) Developmental Neurotoxicity of Arsenic: Involvement of Oxidative Stress and Mitochondrial Functions. Biol Trace Elem Res 186(1):185–198. https://doi.org/10.1007/s12011-018-1286-1

    Article  CAS  PubMed  Google Scholar 

  19. Muller SM, Ebert F, Bornhorst J, Galla HJ, Francesconi KA, Schwerdtle T (2018) Arsenic-containing hydrocarbons disrupt a model in vitro blood-cerebrospinal fluid barrier. J Trace Elem Med Biol 49:171–177. https://doi.org/10.1016/j.jtemb.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  20. Singh V, Kushwaha S, Gera R, Ansari JA, Mishra J, Dewangan J, Patnaik S, Ghosh D (2019) Sneaky Entry of IFNgamma Through Arsenic-Induced Leaky Blood-Brain Barrier Reduces CD200 Expression by Microglial pro-Inflammatory Cytokine. Mol Neurobiol 56(2):1488–1499. https://doi.org/10.1007/s12035-018-1155-0

    Article  CAS  PubMed  Google Scholar 

  21. Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J (2018) Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood-brain barrier’s tight junction proteins. Arch Toxicol 92(11):3255–3275. https://doi.org/10.1007/s00204-018-2304-y

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Duan X, Dong D, Zhang Y, Zhao L, Li W, Chen J, Sun G, Li B (2017) Tissue-specific distributions of inorganic arsenic and its methylated metabolites, especially in cerebral cortex, cerebellum and hippocampus of mice after a single oral administration of arsenite. J Trace Elem Med Biol 43:15–22. https://doi.org/10.1016/j.jtemb.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Hill K, Schoeman MC, Vosloo D (2018) The brains of bats foraging at wastewater treatment works accumulate arsenic, and have low non-enzymatic antioxidant capacities. Neurotoxicology 69:232–241. https://doi.org/10.1016/j.neuro.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  24. Sankar P, Telang AG, Kalaivanan R, Karunakaran V, Suresh S, Kesavan M (2016) Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicol Ind Health 32(3):410–421. https://doi.org/10.1177/0748233713498455

    Article  CAS  PubMed  Google Scholar 

  25. Sun X, He Y, Guo Y, Li S, Zhao H, Wang Y, Zhang J, Xing M (2017) Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues. BMC Vet Res 13(1):157. https://doi.org/10.1186/s12917-017-1066-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Avram S, Udrea AM, Negrea A, Ciopec M, Duteanu N, Postolache C, Duda-Seiman C, Duda-Seiman D, Shaposhnikov S (2019) Prevention of Deficit in Neuropsychiatric Disorders through Monitoring of Arsenic and Its Derivatives as Well as Through Bioinformatics and Cheminformatics. Int J Mol Sci 20(8). https://doi.org/10.3390/ijms20081804

  27. Sharma A, Kshetrimayum C, Sadhu HG, Kumar S (2018) Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants Vitamin E and Coenzyme Q10. Environ Sci Pollut Res Int 25(24):23946–23953. https://doi.org/10.1007/s11356-018-2398-z

    Article  CAS  PubMed  Google Scholar 

  28. Chandravanshi LP, Gupta R, Shukla RK (2019) Arsenic-Induced Neurotoxicity by Dysfunctioning Cholinergic and Dopaminergic System in Brain of Developing Rats. Biol Trace Elem Res 189(1):118–133. https://doi.org/10.1007/s12011-018-1452-5

    Article  CAS  PubMed  Google Scholar 

  29. Wang S, Zhang C, Li Y, Li P, Zhang D, Li C (2019) Anti-liver cancer effect and the mechanism of arsenic sulfide in vitro and in vivo. Cancer Chemother Pharmacol 83(3):519–530. https://doi.org/10.1007/s00280-018-3755-9

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Feng H, Gao Y, Sun L, Wang J, Li Y, Wang C, Zhao L, Hu X, Sun H, Wei Y, Sun D (2013) Role of pigment epithelium-derived factor (PEDF) in arsenic-induced cell apoptosis of liver and brain in a rat model. Biol Trace Elem Res 151(2):269–276. https://doi.org/10.1007/s12011-012-9558-7

    Article  CAS  PubMed  Google Scholar 

  31. Hassani S, Yaghoubi H, Khosrokhavar R, Jafarian I, Mashayekhi V, Hosseini MJ, Shahraki J (2015) Mechanistic view for toxic effects of arsenic on isolated rat kidney and brain mitochondria. Biologia 70(5):683–689. https://doi.org/10.1515/biolog-2015-0081

    Article  CAS  Google Scholar 

  32. Zhao H, He Y, Li S, Sun X, Wang Y, Shao Y, Hou Z, Xing M (2017) Subchronic arsenism-induced oxidative stress and inflammation contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs. Oncotarget 8(25):40327–40344. https://doi.org/10.18632/oncotarget.16960

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat Toxicol 57(1-2):27–37. https://doi.org/10.1016/s0166-445x(01)00268-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This manuscript was supported by the Visiting Scholar Program sponsored by the China Scholarship Council (201906915019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Deng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Deng, H., Wu, Q. et al. Effect of Selenium on Brain Injury in Chickens with Subacute Arsenic Poisoning. Biol Trace Elem Res 200, 330–338 (2022). https://doi.org/10.1007/s12011-021-02630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02630-4

Keywords

Navigation