Skip to main content
Log in

Astragalus Polysaccharide Protects Against Cadmium-Induced Autophagy Injury Through Reactive Oxygen Species (ROS) Pathway in Chicken Embryo Fibroblast

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a harmful heavy metal pollutant, which can cause oxidative stress in the body and induce cell damage. Reactive oxygen species (ROS) is a general term for substances that contain oxygen and are active in the body. However, excessive ROS can damage the body. Cadmium poisoning can cause a large amount of ROS in cells and autophagy. Astragalus polysaccharide (APS) is a plant polysaccharide with biological functions, such as antioxidant and anti-stress activities. In this study, chicken embryo fibroblasts (CEF) were used to determine the relationship between ROS and autophagy damage of Cd-infected cells and the mechanism of APS on cadmium-induced autophagy damage. The results showed that a 10-μL dose of 10 μmol/L cadmium chloride (CdCl2) can induce CEF autophagy and damage when CEF was added for 36 h. Cadmium induced CEF autophagy damage by increasing ROS production. APS could significantly reduce ROS production and LC3-II and Beclin-1 protein expression, increase the expression of mTOR and the level of antioxidation, and restore the viability and morphological damage of CEF exposed to Cd. Our study suggests that APS can alleviate Cd-induced CEF autophagy damage by reducing the production of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mera R, Torres E, Abalde J (2016) Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii. Ecotoxicol Environ Saf 128:236–245

    Article  CAS  PubMed  Google Scholar 

  2. Huo J, Dong A, Yan J, Wang L, Ma C, Lee S (2017) Cadmium toxicokinetics in the freshwater turtle, Chinemys reevesii. Chemosphere 182:392–398

    Article  CAS  PubMed  Google Scholar 

  3. Yang S, Zhang Z, He J, Li J, Zhang J, Xing H, Xu S (2012) Ovarian toxicity induced by dietary cadmium in hen. Biol Trace Elem Res 148(1):53–60

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Q, Huang Y, Zhang K, Huang Y, Yan Y, Wang F, Wu J, Wang X, Xu Z, Chen Y et al (2016) Cadmium-induced immune abnormality is a key pathogenic event in human and rat models of preeclampsia. Environ Pollut 218:770–782

    Article  CAS  PubMed  Google Scholar 

  5. Van MG, Lombaert N, Lison D (2016) Dietary exposure to cadmium and risk of breast cancer in postmenopausal women: a systematic review and meta-analysis. Environ Int 86:1–13

    Article  Google Scholar 

  6. O'Brien P, Salacinski HJ (1998) Evidence that the reactions of cadmium in the presence of metallothionein can produce hydroxyl radicals. Arch Toxicol 72(11):690–700

    Article  CAS  PubMed  Google Scholar 

  7. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1–37

    Article  CAS  PubMed  Google Scholar 

  8. Onukwufor JO, MacDonald N, Kibenge F, Stevens D, Kamunde C (2014) Effects of hypoxia-cadmium interactions on rainbow trout (Oncorhynchus mykiss) mitochondrial bioenergetics: attenuation of hypoxia-induced proton leak by low doses of cadmium. J Exp Biol 217:831–840

    PubMed  Google Scholar 

  9. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188(2):267–275

    Article  CAS  PubMed  Google Scholar 

  10. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24(1):9–23

    Article  CAS  PubMed  Google Scholar 

  11. Xue JF, Shi ZM, Zou J, Li XL (2017) Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 89:1252–1261

    Article  CAS  PubMed  Google Scholar 

  12. Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M (2017) Autophagy, its mechanisms and regulation: implications in neurodegenerative diseases. Ageing Res Rev 40:64–74

    Article  CAS  PubMed  Google Scholar 

  13. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zi W, Jing W, Ling W (2016) Morphological analysis of the origin of autophagosomal membrane. J Chin Electron Microsc Soc 35:521–525

    Google Scholar 

  15. Yang A, Pantoom S, Wu YW (2017) Legionella Elucidation of the anti-autophagy mechanism of the effector RavZ using semisynthetic LC3 proteins. ELife 6. https://doi.org/10.7554/eLife.23905

  16. Weh KM, Howell AB, Kresty LA (2016) Expression, modulation, and clinical correlates of the autophagy protein Beclin-1 in esophageal adenocarcinoma. Mol Carcinog 55(11):1876–1885

    Article  CAS  PubMed  Google Scholar 

  17. Sokolova IM, Evans S, Hughes FM (2004) Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. J Exp Biol 207:3369–3380

    Article  CAS  PubMed  Google Scholar 

  18. Son YO, Wang X, Hitron JA, Zhang Z, Cheng S, Budhraja A, Ding S, Lee JC, Shi X (2011) Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells. Toxicol Appl Pharmacol 255(3):287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie W, Ge M, Li G, Zhang L, Tang Z, Li R, Zhang R (2017) Astragalus polysaccharide protect against cadmium-induced cytotoxicity through the MDA5/NF-κB pathway in chicken peripheral blood lymphocytes. Molecules 22(10). https://doi.org/10.3390/molecules22101610

  20. Rui W, Li C, Chen H (2019) Progress of structure characterization and biological activities of Astragalus polysaccharides. Tradit Chin Drug Res Clin Pharmacol 30:264–270

    Google Scholar 

  21. Tomoda M, Shimizu N, O Hara N, Gonda RK, Ishii S, O Tsuki H (1992) A reticuloendothelial system-activating glycan from the roots of Astragalus membranaceus. Phytochemistry 31(1):63–66

    Article  CAS  Google Scholar 

  22. Xie L, Wu Y, Fan Z, Liu Y, Zeng J (2016) Astragalus polysaccharide protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury: the role of PI3K/AKT, Bax/Bcl-2 and caspase-3. Mol Med Rep 14(1):904–910

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Sun Q, Ju J, Chen W, Zhao X, Zhang Y, Yang Y (2018) Effect of Astragalus polysaccharides on cardiac dysfunction in db/db Mice with respect to oxidant stress. Biomed Res Int 2018:8359013

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xue H, Gan F, Zhang Z, Hu J, Chen X, Huang K (2015) Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway. Int J Biol Macromol 81:22–30

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Gu J, Chen Z, Xing K, Sun B (2015) Astragalus polysaccharide suppresses palmitate-induced apoptosis in human cardiac myocytes: the role of Nrf1 and antioxidant response. Int J Clin Exp Pathol 8(3):2515–2524

    PubMed  PubMed Central  Google Scholar 

  26. An F, Yan C, Liu Y (2019) Protective effects of Astragalus polysaccharide on immune function injury and oxidative stress injury in rats exposed to cadmium. Chin J Gerontol 39:400–403

    Google Scholar 

  27. Hu B (2018) Study on optimization of extraction process of Astragalus polysaccharides and its antioxidant activity. China Pharmaceuticals 27:11–14

    Google Scholar 

  28. Yang X, Arslan M, Liu X, Song H, Du M, Li Y, Zhang Z (2020) IFN-γ establishes interferon-stimulated gene-mediated antiviral state against Newcastle disease virus in chicken fibroblasts. Acta Biochim Biophys Sin 52(3):268–280

    Article  CAS  PubMed  Google Scholar 

  29. Zhang R, Yu Q, Shi G, Liu R, Zhang W, Zhao X, Li G, Ge M (2017) chTLR4 pathway activation by Astragalus polysaccharide in bursa of Fabricius. BMC Vet Res 13(1):119

    Article  PubMed  Google Scholar 

  30. Martorana F, Gaglio D, Bianco MR, Aprea F, Virtuoso A, Bonanomi M, Alberghina L, Papa M, Colangelo AM (2018) Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis 9(3):391

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zuo R, Wang Y, Li J, Wu J, Wang W, Li B, Sun C, Wang Z, Shi C, Zhou Y et al (2019) Rapamycin induced autophagy inhibits inflammation-mediated endplate degeneration by enhancing Nrf2/Keap1 signaling of cartilage endplate stem cells. Stem Cells 37(6):828–840

    Article  CAS  PubMed  Google Scholar 

  32. Wang SH, Shih YL, Kuo TC, Ko WC, Shih CM (2009) Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells. Toxicol Sci 108(1):124–131

    Article  CAS  PubMed  Google Scholar 

  33. Kar I, Patra A (2021) Tissue bioaccumulation and toxicopathological effects of cadmium and its dietary amelioration in poultry-a review. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02503-2

  34. Ni Z, Zhang Y, Deng C (2015) Expression of LC3 gene in cell autophagy. Hubei Agric Sci 54:4932–4936

    Google Scholar 

  35. Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2009) Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant Cell Physiol 50(3):610–625

    Article  CAS  PubMed  Google Scholar 

  36. Sahin E, Gümüşlü S (2004) Cold-stress-induced modulation of antioxidant defence: role of stressed conditions in tissue injury followed by protein oxidation and lipid peroxidation. Int J Biometeorol 48(4):165–171

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Zhang R, Xie Y, Wang H, Ge M (2017) The protective effects of polysaccharides from Agaricus blazei Murill against cadmium-induced oxidant stress and inflammatory damage in chicken livers. Biol Trace Elem Res 178(1):117–126

    Article  CAS  PubMed  Google Scholar 

  38. Yang F, Yan G, Li Y, Han Z, Zhang L, Chen S, Feng C, Huang Q, Ding F, Yu Y et al (2016) Astragalus polysaccharide attenuated iron overload-induced dysfunction of mesenchymal stem cells via suppressing mitochondrial ROS. Cell Physiol Biochem 39(4):1369–1379

    Article  CAS  PubMed  Google Scholar 

  39. Zhan X, Yan C, Chen Y, Wei X, Xiao J, Deng L, Yang Y, Qiu P, Chen Q (2018) Celastrol antagonizes high glucose-evoked podocyte injury, inflammation and insulin resistance by restoring the HO-1-mediated autophagy pathway. Mol Immunol 104:61–68

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Zhang H (2018) Radix Astragali polysaccharide extraction, chemical modification and effect of scavenging of free radicals. Shandong Chem Ind 47(11):44–45

    Google Scholar 

  41. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Modeling of single and competitive metal adsorption onto a natural polysaccharide. Environ Sci Technol 36(10):2242–2248

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Liu F, Yang Y, Li D, Lv J, Ou Y, Sun F, Chen J, Shi Y, Xia P (2014) Astragalus polysaccharide ameliorates ionizing radiation-induced oxidative stress in mice. Int J Biol Macromol 68:209–214

    Article  CAS  PubMed  Google Scholar 

  43. Chen W, Ju J, Yang Y, Wang H, Chen W, Zhao X, Ye H, Zhang Y (2018) Astragalus polysaccharides protect cardiac stem and progenitor cells by the inhibition of oxidative stress-mediated apoptosis in diabetic hearts. Drug Des Devel Ther 12:943–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meng Q, Du X, Wang H, Gu H, Zhan J, Zhou Z (2017) Astragalus polysaccharides inhibits cell growth and pro-inflammatory response in IL-1β-stimulated fibroblast-like synoviocytes by enhancement of autophagy via PI3K/AKT/mTOR inhibition. Apoptosis 22(9):1138–1146

    Article  CAS  PubMed  Google Scholar 

  45. Lu L, Huang Y, Chen D, Wang M, Zou Y, Wan H, Wei L (2016) Astragalus polysaccharides decrease muscle wasting through Akt/mTOR, ubiquitin proteasome and autophagy signalling in 5/6 nephrectomised rats. J Ethnopharmacol 186:125–135

    Article  CAS  PubMed  Google Scholar 

  46. Cao Y, Shen T, Huang X, Lin Y, Chen B, Pang J, Li G, Wang Q, Zohrabian S, Duan C, Ruan Y, Man Y, Wang S, Li J (2017) Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity. Oncotarget 8(3):4837–4848

    Article  PubMed  Google Scholar 

  47. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131

    Article  CAS  PubMed  Google Scholar 

  48. Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, Lin L, Kovács AL, Yu L, Zhang H (2011) The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 21(2):343–357

    Article  CAS  PubMed  Google Scholar 

  49. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329

    Article  CAS  PubMed  Google Scholar 

  50. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Traditional Chinese Veterinary Medicine Laboratory in the College of Veterinary Medicine, Northeast Agricultural University.

Funding

This work was supported by the National Science Foundation of China (Grant No. 31272533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruili Zhang.

Ethics declarations

Ethics Approval

Ethical treatment of animals used in this study was approved by the Animal Welfare Committee protocol (#NEAU-2013-02-0252-11) at Northeast Agricultural University (Harbin, China).

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Tang, Z., Bai, Y. et al. Astragalus Polysaccharide Protects Against Cadmium-Induced Autophagy Injury Through Reactive Oxygen Species (ROS) Pathway in Chicken Embryo Fibroblast. Biol Trace Elem Res 200, 318–329 (2022). https://doi.org/10.1007/s12011-021-02628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02628-y

Keywords

Navigation