Skip to main content
Log in

Blood Trace Element Status in Multiple Sclerosis: a Systematic Review and Meta-analysis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this meta-analysis was to investigate whether the blood concentrations of patients with multiple sclerosis (MS) are associated with those of the healthy control group in terms of trace elements including zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), selenium (Se), and copper (Cu). A comprehensive search was performed in online databases including PubMed, Scopus, Embase, and Web of Science for studies, which have addressed trace elements in MS up to July 23, 2020. The chi-square test and I2 statistic were utilized to evaluate inter-study heterogeneity across the included studies. Weighted mean differences (WMDs) and corresponding 95% CI were considered as a pooled effect size (ES). Twenty-seven articles (or 32 studies) with a total sample comprised of 2895 participants (MS patients (n = 1567) and controls (n = 1328)) were included. Pooled results using random-effects model indicated that the levels of Zn (WMD = − 7.83 mcg/dl, 95% CI = − 12.78 to − 2.87, Z = 3.09, P = 0.002), and Fe (WMD = − 13.66 mcg/dl, 95% CI = − 23.13 to − 4.19, Z = 2.83, P = 0.005) were significantly lower in MS patients than in controls. However, it was found that levels of Mn (WMD = 0.03 mcg/dl, 95% CI = 0.01 to 0.04, Z = 2.89, P = 0.004) were significantly higher in MS patients. Yet, no significant differences were observed in the levels of Mg, Se, and Cu between both groups. This meta-analysis revealed that the circulating levels of Zn and Fe were significantly lower in MS patients and that Mn level was significantly higher than those in the control group. However, it was found that there was no significant difference between MS patients and controls with regard to levels of Mg, Se, and Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Abo-Krysha N, Rashed L (2008) The role of iron dysregulation in the pathogenesis of multiple sclerosis: an Egyptian study. (Accessed 5 14)

  2. Alimonti A, Ristori G, Giubilei F, Stazi MA, Pino A, Visconti A, Brescianini S, Monti MS, Forte G, Stanzione P (2007) Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. Neurotoxicology 28(3):450–456

    Article  CAS  PubMed  Google Scholar 

  3. Alizadeh A, Mehrpour O, Nikkhah K, Bayat G, Espandani M, Golzari A, Jarahi L, Foroughipour M (2016) Comparison of serum concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls. Electron Physician 8(8):2759–2764

    Article  PubMed  PubMed Central  Google Scholar 

  4. Armon-Omer A, Waldman C, Simaan N, Neuman H, Tamir S, Shahien R (2019) New insights on the nutrition status and antioxidant capacity in Multiple Sclerosis patients. Nutrients 11(2):427

    Article  CAS  PubMed Central  Google Scholar 

  5. Berlet HH, Bischoff H, Weinhardt F (1994) Divalent metals of myelin and their differential binding by myelin basic protein of bovine central nervous system. Neurosci Lett 179(1-2):75–78

    Article  CAS  PubMed  Google Scholar 

  6. Bredholt M, Frederiksen JL (2016) Zinc in multiple sclerosis: a systematic review and meta-analysis. ASN Neuro 8(3):1759091416651511

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bsteh G, Haschka D, Tymoszuk P, Berek K, Petzer V, Hegen H, Wurth S, Auer M, Zinganell A, Pauli FD, Deisenhammer F, Weiss G, Berger T (2019) Serum hepcidin levels in multiple sclerosis. Mult Scler J 5(4):2055217319885984

    Google Scholar 

  8. Choi BY, Jang BG, Kim JH, Seo J-N, Wu G, Sohn M, Chung TN, Suh SW (2013) Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model. Neurobiol Dis 54:382–391

    Article  CAS  PubMed  Google Scholar 

  9. Choi BY, Jung JW, Suh SW (2017) The emerging role of zinc in the pathogenesis of multiple sclerosis. Int J Mol Sci 18(10):2070

    Article  PubMed Central  Google Scholar 

  10. Crichton RR, Dexter D, Ward RJ (2008) Metal based neurodegenerative diseases—from molecular mechanisms to therapeutic strategies. Coord Chem Rev 252(10-11):1189–1199

    Article  CAS  Google Scholar 

  11. de Oliveira M, Gianeti TMR, da Rocha FCG, Lisboa-Filho PN, Piacenti-Silva M (2020) A preliminary study of the concentration of metallic elements in the blood of patients with multiple sclerosis as measured by ICP-MS. Sci Rep 10(1):1–8

    Article  Google Scholar 

  12. De Riccardis L, Buccolieri A, Muci M, Pitotti E, De Robertis F, Trianni G, Manno D, Maffia M (2018) Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim Biophys Acta Mol basis Dis 1864(5 Pt A):1828–1838

    Article  PubMed  Google Scholar 

  13. Derkus B, Emregul E, Yucesan C, Emregul KC (2013) Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens Bioelectron 46:53–60

    Article  CAS  PubMed  Google Scholar 

  14. Dore-Duffy P, Catalanotto F, Donaldson JO, Ostrom KM, Testa MA (1983) Zinc in muliple sclerosis. Ann Neurol 14(4):450–454

    Article  CAS  PubMed  Google Scholar 

  15. Ellidag HY, Kurtulus F, Yaman A, Eren E, Yılmaz N, Aydin O, Bayındır A (2014) Serum iron metabolism markers including hepcidin in multiple sclerosis patients. Neurochem J 3(8):226–230

    Article  Google Scholar 

  16. Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int 43(4-5):475–480

    Article  CAS  PubMed  Google Scholar 

  17. Erikson KM, Syversen T, Aschner JL, Aschner M (2005) Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19(3):415–421

    Article  CAS  PubMed  Google Scholar 

  18. Filippi M, Preziosa P, Rocca MA (2016) Multiple sclerosis. Handb Clin Neurol 135:399–423

    Article  PubMed  Google Scholar 

  19. Foong J, Rozewicz L, Chong W, Thompson A, Miller D, Ron M (2000) A comparison of neuropsychological deficits in primary and secondary progressive multiple sclerosis. J Neurol 247(2):97–101

    Article  CAS  PubMed  Google Scholar 

  20. Forte G, Visconti A, Santucci S, Ghazaryan A, Figà-Talamanca L, Cannoni S, Bocca B, Pino A, Violante N, Alimonti A (2005) Quantification of chemical elements in blood of patients affected by multiple sclerosis. Ann Ist Super Sanita 41(2):213–216

    CAS  PubMed  Google Scholar 

  21. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:1–12

    Article  Google Scholar 

  22. Ghoreishi A, Mohseni M, Amraei R, Alizadeh A, Mazloomzadeh S (2015) Investigation the amount of copper, lead, zinc and cadmium levels in serum of Iranian multiple sclerosis patients. J Chem Pharm Sci 8:40–45

    CAS  Google Scholar 

  23. Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134(Pt 7):1914–1924

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ho SY, Catalanotto FA, Lisak RP, Dore-Duffy P (1986) Zinc in multiple sclerosis. II: Correlation with disease activity and elevated plasma membrane–bound zinc in erythrocytes from patients with multiple sclerosis. Ann Neurol 20(6):712–715

    Article  CAS  PubMed  Google Scholar 

  25. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M (2015) Manganese is essential for neuronal health. Annu Rev Nutr 35:71–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jensen GE, Gissel-Nielsen G, Clausen J (1980) Leucocyte glutathione peroxidase activity and selenium level in multiple sclerosis. J Neurol Sci 48(1):61–67

    Article  CAS  PubMed  Google Scholar 

  27. Johnson S (2000) The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis. Med Hypotheses 55(3):239–241

    Article  CAS  PubMed  Google Scholar 

  28. Kapaki E, Segditsa J, Papageorgiou C (1989) Zinc, copper and magnesium concentration in serum and CSF of patients with neurological disorders. Acta Neurol Scand 79(5):373–378

    Article  CAS  PubMed  Google Scholar 

  29. Karpińska E, Socha K, Soroczyńska J, Kochanowicz J, Jakoniuk M, Mariak Z, Borawska MH (2017) Concentration of magnesium in the serum and the ability status of patients with relapsing-remitting multiple sclerosis. J Elem 22(2):671–679

    Google Scholar 

  30. Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genet 2(1):1–79

    Google Scholar 

  31. Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84(11):825–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim Y-H, Jung K-I, Song C-H (2012) Effects of serum calcium and magnesium on heart rate variability in adult women. Biol Trace Elem Res 150(1-3):116–122

    Article  PubMed  Google Scholar 

  33. Korpela H, Kinnunen E, Juntunen J, Kumpulainen J, Koskenvuo M (1989) Serum selenium concentration, glutathione peroxidase activity and lipid peroxides in a co-twin control study on multiple sclerosis. J Neurol Sci 91(1-2):79–84

    Article  CAS  PubMed  Google Scholar 

  34. Kurup RK, Kurup PA (2002) Hypothalamic digoxin and hypomagnesemia in relation to the pathogenesis of multiple sclerosis. J Trace Elem Exp Med 15(4):211–220

    Article  CAS  Google Scholar 

  35. LeVine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 1012(1):252–266

    Article  CAS  PubMed  Google Scholar 

  36. Masoud SA, Fakharian E (2007) Assessment of serum magnesium, copper, and zinc levels in multiple sclerosis (MS) patients

  37. Matar A, Jennani S, Abdallah H, Mohsen N, Borjac J (2020) Serum iron and zinc levels in Lebanese multiple sclerosis patients. Acta Neurol Taiwanica 29(1):5–11

    Google Scholar 

  38. Mazzella G, Sinforiani E, Savoldi F, Allegrini M, Lanzola E, Scelsi R (1983) Blood cells glutathione peroxidase activity and selenium in multiple sclerosis. Eur Neurol 22(6):442–446

    Article  CAS  PubMed  Google Scholar 

  39. Mezzaroba L, Alfieri DF, Simão ANC, Reiche EMV (2019) The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74:230–241

    Article  CAS  PubMed  Google Scholar 

  40. Mezzaroba L, Oliveira SR, Flauzino T, Alfieri DF, Pereira WLDCJ, Kallaur AP, Lozovoy MAB, Kaimen-Maciel DR, Maes M, Reiche EMV (2020) Antioxidant and anti-inflammatory diagnostic biomarkers in multiple sclerosis: a machine learning study. Mol Neurobiol:1–12

  41. Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi-Niaragh F, Azizi G (2014) The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J 14(1):e13

    Article  PubMed  PubMed Central  Google Scholar 

  42. Olsson T, Barcellos LF, Alfredsson L (2017) Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 13(1):25–36

    Article  CAS  PubMed  Google Scholar 

  43. Oraby MI, Hussein M, Abd Elkareem R, Elfar E (2019) The emerging role of serum zinc in motor disability and radiological findings in patients with multiple sclerosis. Egypt J Neurol Psychiatr Neurosurg 55(1):1–5

    Article  Google Scholar 

  44. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sánchez ED (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013:1–14

    Article  Google Scholar 

  45. Pawlitzki M, Uebelhör J, Sweeney-Reed CM, Stephanik H, Hoffmann J, Lux A, Reinhold D (2018) Lower serum zinc levels in patients with multiple sclerosis compared to healthy controls. Nutrients 10(8):967

    Article  PubMed Central  Google Scholar 

  46. Polman, C., Reingold, S., Banwell, B., Clanet, M., Cohen, J., Filippi, M., Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., 2011. O’Connor P., Sandberg-Wollheim M., Thompson AJ, Waubant E., Weinshenker B., Wolinsky. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. JS Ann Neurol 69, 292-302.

    Article  Google Scholar 

  47. Popescu BF, Frischer JM, Webb SM, Tham M, Adiele RC, Robinson CA, Fitz-Gibbon PD, Weigand SD, Metz I, Nehzati S (2017) Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol 134(1):45–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13(3):227–231

    Article  CAS  PubMed  Google Scholar 

  49. Ristori G, Brescianini S, Pino A, Visconti A, Vittori D, Coarelli G, Cotichini R, Bocca B, Forte G, Pozzilli C (2011) Serum elements and oxidative status in clinically isolated syndromes: imbalance and predictivity. Neurology 76(6):549–555

    Article  CAS  PubMed  Google Scholar 

  50. Sarmadi M, Bidel Z, Najafi F, Ramakrishnan R, Teymoori F, Zarmehri HA, Nazarzadeh M (2020) Copper concentration in multiple sclerosis: a systematic review and meta-analysis. Multiple Scler Relat Disord 45:102426

    Article  Google Scholar 

  51. Schwarz S, Leweling H (2005) Multiple sclerosis and nutrition. Multiple Scler (Houndmills, Basingstoke, England) 11(1):24–32

    Article  CAS  Google Scholar 

  52. Sedighi B, Ebrahimi HA, Haghdoost AA, Abotorabi M (2013) Comparison of serum levels of copper and zinc among multiple sclerosis patients and control group. Iran J Neurol 12(4):125–128

    PubMed  PubMed Central  Google Scholar 

  53. Sfagos C, Makis AC, Chaidos A, Hatzimichael EC, Dalamaga A, Kosma K, Bourantas KL (2005) Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients. Mult Scler J 11(3):272–275

    Article  CAS  Google Scholar 

  54. Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV (2018) Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 9(3):1–16

    Article  CAS  Google Scholar 

  55. Siotto M, Filippi MM, Simonelli I, Landi D, Ghazaryan A, Vollaro S, Ventriglia M, Pasqualetti P, Rongioletti MCA, Squitti R (2019) Oxidative stress related to iron metabolism in relapsing remitting multiple sclerosis patients with low disability. Front Neurosci 13:86

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sloot W, Korf J, Koster J, De Wit L, Gramsbergen J (1996) Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelationin vivo. Exp Neurol 138(2):236–245

    Article  CAS  PubMed  Google Scholar 

  57. Smith DK, Feldman EB, Feldman D (1989) Trace element status in multiple sclerosis. Am J Clin Nutr 50(1):136–140

    Article  CAS  PubMed  Google Scholar 

  58. Socha K, Kochanowicz J, Karpińska E, Soroczyńska J, Jakoniuk M, Mariak Z, Borawska MH (2014) Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr J 13(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  59. Socha K, Karpińska E, Kochanowicz J, Soroczyńska J, Jakoniuk M, Wilkiel M, Mariak ZD, Borawska MH (2017) Dietary habits; concentration of copper, zinc, and Cu-to-Zn ratio in serum and ability status of patients with relapsing-remitting multiple sclerosis. Nutrition 39:76–81

    Article  PubMed  Google Scholar 

  60. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118

    Article  CAS  PubMed  Google Scholar 

  61. Van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta (BBA) Mol Basis Dis 1812(2):141–150

    Article  Google Scholar 

  62. Visconti A, Cotichini R, Cannoni S, Bocca B, Forte G, Ghazaryan A, Santucci S, D’Ippolito C, Stazi MA, Salvetti M (2005) Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: a six-month longitudinal follow-up study. Ann Ist Super Sanita 41(2):217–222

    CAS  PubMed  Google Scholar 

  63. Weiner HL (2004) Multiple sclerosis is an inflammatory T-cell–mediated autoimmune disease. Arch Neurol 61(10):1613–1615

    Article  PubMed  Google Scholar 

  64. Yasui M, Ota K (1992) Experimental and clinical studies on dysregulation of magnesium metabolism and the aetiopathogenesis of multiple sclerosis. Magnes Res 5(4):295–302

    CAS  PubMed  Google Scholar 

  65. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Corresponding author

Correspondence to Somaye Farzinmehr.

Ethics declarations

Ethics Approval and Consent to Participate

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Materials

ESM 1

(DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirooei, E., Kashani, S.M.A., Owrangi, S. et al. Blood Trace Element Status in Multiple Sclerosis: a Systematic Review and Meta-analysis. Biol Trace Elem Res 200, 13–26 (2022). https://doi.org/10.1007/s12011-021-02621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02621-5

Keywords

Navigation