Skip to main content
Log in

Kidney Cadmium Concentrations in an Urban Sri Lankan Population: an Autopsy Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Contamination and bioaccumulation of toxic heavy metals in our geo-environment is a growing public health concern. Human biomonitoring is an essential step in assessing the population risk of chronic exposure to environmental contaminants. Whole kidneys collected from a cohort of 92 deceased individuals undergoing forensic autopsies in Colombo, Sri Lanka, were analysed for cadmium (Cd) bioaccumulation using ICP-MS. Mean age of the population was 55.4 ± 15.4 years. Mean and median renal Cd concentrations of the total population were 4.38 and 2.60 μg g−1 w/w, respectively, which were below estimated toxic ranges. Males accumulated higher levels of Cd than females (p = 0.377). Cd concentrations were higher in the < 60 age group than the > 60 age group (p = 0.92), while the highest levels were reported in 51–60 age group. However, no significant correlation was found between renal Cd concentration and age (Ʈb = − 0.005, p = 0.94). Individuals who smoked, chewed betel or consumed alcohol were found to have elevated renal Cd concentrations in comparison to those who did not use these substances. This is the largest autopsy study on renal Cd bioaccumulation in Sri Lanka, and the findings do not indicate a high exposure risk to environmental Cd contamination at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data sheets and data acquisition forms including raw ICP-MS data are available with primary author and can be provided upon request.

References

  1. Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234

    Article  CAS  PubMed  Google Scholar 

  2. Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs) arsenic (As) cadmium (Cd) chromium (Cr) (VI) mercury (Hg) and lead (Pb) on the total environment: an overview. Environ Monit Assess 191(7):419. https://doi.org/10.1007/s10661-019-7528-7

    Article  CAS  PubMed  Google Scholar 

  3. Vaccari M, Vinti G, Cesaro A, Belgiorno V, Salhofer S, Dias MI, Jandric A (2019) WEEE treatment in developing countries: environmental pollution and health consequences—an overview. Int J Environ Res Public Health 16(9):1595. https://doi.org/10.3390/ijerph16091595

    Article  CAS  PubMed Central  Google Scholar 

  4. Järup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68(1):167–182. https://doi.org/10.1093/bmb/ldg032

    Article  PubMed  Google Scholar 

  5. Gogoasa I, Gergen I, Rada M, Pârvu D, Ciobanu C, Bordean D, Marutoiu C, Moigradean D (2006) AAS detection of heavy metals in sheep cheese (the Banat area Romania). Buletinul USAMV-CN 62:240–245

    Google Scholar 

  6. Arnich N, Sirot V, Rivière G, Jean J, Noël L, Guérin T, Leblanc JC (2012) Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem Toxicol 50(7):2432–2449. https://doi.org/10.1016/j.fct.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  7. Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78(18):6397–6404. https://doi.org/10.1128/AEM.01665-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. WHO International Program on Chemical Safety (2010) Ten chemicals of major public health concern. Available at https://www.who.int/ipcs/assessment/public_health/chemicals_phc/en/ Accessed on 17.07.2020

  9. Rikans LE, Yamano T (2000) Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol 14(2):110–117. https://doi.org/10.1002/(SICI)1099-0461(2000)14:2%3C110::AID-JBT7%3E3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  10. Steenland K, Boffetta P (2000) Lead and cancer in humans: where are we now? Am J Ind Med 38(3):295–299. https://doi.org/10.1002/1097-0274(200009)38:3%3C295::AID-AJIM8%3E3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  11. Järup L (2002) Cadmium overload and toxicity. Nephrol Dial Transplant 17(suppl_2):35–39. https://doi.org/10.1093/ndt/17.suppl_2.35

    Article  PubMed  Google Scholar 

  12. Yang JM, Arnush M, Chen QY, Wu XD, Pang B, Jiang XZ (2003) Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod Toxicol 17(5):553–560. https://doi.org/10.1016/S0890-6238(03)00100-X

    Article  CAS  PubMed  Google Scholar 

  13. Il'yasova D, Schwartz GG (2005) Cadmium and renal cancer. Toxicol Appl Pharmacol 207(2):179–186. https://doi.org/10.1016/j.taap.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Bertin G, Averbeck D (2006) Cadmium: cellular effects modifications of biomolecules modulation of DNA repair and genotoxic consequences (a review). Biochimie 88(11):1549–1559. https://doi.org/10.1016/j.biochi.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  15. Ikeh-Tawari EP, Anetor JI, Charles-Davies MA (2013) Cadmium level in pregnancy influence on neonatal birth weight and possible amelioration by some essential trace elements. Toxicol Int 20(1):108–112. https://doi.org/10.4103/0971-6580.111558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi Z, Taylor AW, Riley M, Byles J, Liu J, Noakes M (2018) Association between dietary patterns cadmium intake and chronic kidney disease among adults. Clin Nutr 37(1):276–284. https://doi.org/10.1016/j.clnu.2016.12.025

    Article  CAS  PubMed  Google Scholar 

  17. Elinder CG, Kjellström T, Friberg L, Linnman BLL (1976) Cadmium in kidney cortex liver and pancreas from Swedish autopsies. Arch Environ Health: An International Journal 31(6):292–302. https://doi.org/10.1080/00039896.1976.10667239

    Article  CAS  Google Scholar 

  18. Järup L, Berglund M, Elinder CG, Nordberg G, Vanter M (1998) Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand J Work Environ Health 24:1–51 https://www.jstor.org/stable/40967243

    Article  Google Scholar 

  19. Satarug S, Haswell-Elkins MR, Moore MR (2000) Safe levels of cadmium intake to prevent renal toxicity in human subjects. Br J Nutr 84(6):791–802. https://doi.org/10.1017/S0007114500002403

    Article  CAS  PubMed  Google Scholar 

  20. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137(1–2):65–83. https://doi.org/10.1016/S0378-4274(02)00381-8

    Article  CAS  PubMed  Google Scholar 

  21. Satarug S (2019) Cadmium sources and toxicity. Toxics 7(2):25. https://doi.org/10.3390/toxics7020025

    Article  CAS  PubMed Central  Google Scholar 

  22. Levine KE, Redmon JH, Elledge MF, Wanigasuriya KP, Smith K, Munoz B, Waduge VA, Periris-John RJ, Sathiakumar N, Harrington JM, Womack DS, Wickremasinghe R (2016) Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka—a multimedia laboratory analysis of biological food and environmental samples. Environ Monit Assess 188(10):548. https://doi.org/10.1007/s10661-016-5524-8

    Article  CAS  PubMed  Google Scholar 

  23. Nanayakkara S, Senevirathna STMLD, Harada KH, Chandrajith R, Hitomi T, Abeysekera T, Muso E, Watanabe T, Koizumi A (2019) Systematic evaluation of exposure to trace elements and minerals in patients with chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka. J Trace Elem Med Biol 54:206–213. https://doi.org/10.1016/j.jtemb.2019.04.019

    Article  CAS  PubMed  Google Scholar 

  24. Bandara JMRS, Senevirathna DMAN, Dasanayake DMRSB, Herath V, Bandara JMRP, Abeysekara T, Rajapaksha KH (2008) Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (tilapia). Environ Geochem Health 30(5):465–478. https://doi.org/10.1007/s10653-007-9129-6

    Article  CAS  PubMed  Google Scholar 

  25. Bandara JMRS, Wijewardena HVP, Liyanege J, Upul MA, Bandara JMUA (2010) Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol Lett 198(1):33–39. https://doi.org/10.1016/j.toxlet.2010.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wanigasuriya KP, Peiris-John RJ, Wickremasinghe R (2011) Chronic kidney disease of unknown aetiology in Sri Lanka: is cadmium a likely cause? BMC Nephrol 12(1):32. https://doi.org/10.1186/1471-2369-12-32

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jayatilake N, Mendis S, Maheepala P, Mehta FR (2013) Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country. BMC Nephrol 14(1):180. https://doi.org/10.1186/1471-2369-14-180

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chandrajith R, Nanayakkara S, Itai K, Aturaliya TN, Dissanayake CB, Abeysekera T, Harada K, Watanabe T, Koizumi A (2011) Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: geographic distribution and environmental implications. Environ Geochem Health 33(3):267–278. https://doi.org/10.1007/s10653-010-9339-1

    Article  CAS  PubMed  Google Scholar 

  29. Nanayakkara S, Senevirathna ST, Abeysekera T, Chandrajith R, Ratnatunga N, Gunarathne EDL, Yan J, Hitomi T, Muso E, Komiya T, Harada KH, Liu W, Kobayashi H, Okuda H, Sawatari H, Matsuda F, Yamada R, Watanabe T, Miyataka H, Himeno S, Koizumi A (2014) An integrative study of the genetic social and environmental determinants of chronic kidney disease characterized by tubulointerstitial damages in the North Central Region of Sri Lanka. J Occup Health 56:28–38. https://doi.org/10.1539/joh.13-0172-OA

    Article  CAS  PubMed  Google Scholar 

  30. Gunawardena SA, Gunawardana JW, Chandrajith R, Thoradeniya T, Jayasinghe S (2020) Renal bioaccumulation of trace elements in urban and rural Sri Lankan populations: a preliminary study based on post mortem tissue analysis. J Trace Elem Med Biol 61:126565. https://doi.org/10.1016/j.jtemb.2020.126565

    Article  CAS  PubMed  Google Scholar 

  31. Barregard L, Fabricius-Lagging E, Lundh T, Mölne J, Wallin M, Olausson M, Cecilia Sallsten G (2010) Cadmium mercury and lead in kidney cortex of living kidney donors: impact of different exposure sources. Environ Res 110(1):47–54. https://doi.org/10.1016/j.envres.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  32. Gobe GC, Mott SA, de Jonge M, Hoy WE (2019) Heavy metal imaging in fibrotic human kidney tissue using the synchrotron X-ray fluorescence microprobe. Transl Androl Urol 8(Suppl 2):S184. https://doi.org/10.21037/tau.2019.03.15

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goullé JP, Mahieu L, Anagnostides JG, Bouige D, Saussereau E Guerber M Lacroix C (2010) ICP-MS metal distribution in tissues of deceased individuals. Ann Toxicol Anal 22:1–9. https://doi.org/10.1051/ata/2010001

    Article  CAS  Google Scholar 

  34. Hayashi C, Koizumi N, Nishio H, Koizumi N, Ikeda M (2012) Cadmium and other metal levels in autopsy samples from a cadmium-polluted area and non-polluted control areas in Japan. Biol Trace Elem Res 145(1):10–22. https://doi.org/10.1007/s12011-011-9155-1

    Article  CAS  PubMed  Google Scholar 

  35. Kayaaltı Z, Mergen G, Söylemezoğlu T (2010) Effect of metallothionein core promoter region polymorphism on cadmium zinc and copper levels in autopsy kidney tissues from a Turkish population. Toxicol Appl Pharmacol 245(2):252–255. https://doi.org/10.1016/j.taap.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  36. Lech T, Sadlik JK (2017) Cadmium concentration in human autopsy tissues. Biol Trace Elem Res 179(2):172–177. https://doi.org/10.1007/s12011-017-0959-5

    Article  CAS  PubMed  Google Scholar 

  37. Mari M, Nadal M, Schuhmacher M, Barbería E, García F, Domingo JL (2014) Human exposure to metals: levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biol Trace Elem Res 159(1–3):15–21. https://doi.org/10.1007/s12011-014-9957-z

    Article  CAS  PubMed  Google Scholar 

  38. Wilk A, Kalisińska E, Kosik-Bogacka DI, Romanowski M, Różański J, Ciechanowski K, Słojewski M, Łanocha-Arendarczyk N (2017) Cadmium lead and mercury concentrations in pathologically altered human kidneys. Environ Geochem Health 39(4):889–899. https://doi.org/10.1007/s10653-016-9860-y

    Article  CAS  PubMed  Google Scholar 

  39. Svartengren M, Elinder CG, Friberg L, Lind B (1986) Distribution and concentration of cadmium in human kidney. Environ Res 39(1):1–7. https://doi.org/10.1016/S0013-9351(86)80002-0

    Article  CAS  PubMed  Google Scholar 

  40. Benedetti JL (1999) Levels of cadmium in kidney and liver tissues among a Canadian population (province of Quebec). J Toxicol Environ Health A 56(3):145–163. https://doi.org/10.1080/009841099158123

    Article  CAS  PubMed  Google Scholar 

  41. Johansen P, Mulvad G, Pedersen HS, Hansen JC, Riget F (2006) Accumulation of cadmium in livers and kidneys in Greenlanders. Sci Total Environ 372(1):58–63. https://doi.org/10.1016/j.scitotenv.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  42. Lauwerys R, Hardy R, Job M, Buchet JP, Roels H, Bruaux P, Rondia D (1984) Environmental pollution by cadmium and cadmium body burden: an autopsy study. Toxicol Lett 23(3):287–289. https://doi.org/10.1016/0378-4274(84)90023-7

    Article  CAS  PubMed  Google Scholar 

  43. Ellis KJ, Cohn SH, Smith TJ (1985) Cadmium inhalation exposure estimates: their significance with respect to kidney and liver cadmium burden. J Toxicol Environ Health A 15(1):173–187. https://doi.org/10.1080/15287398509530644

    Article  CAS  Google Scholar 

  44. Lyon TD, Aughey E, Scott R, Fell GS (1999) Cadmium concentrations in human kidney in the UK: 1978–1993. J Environ Monit 1(3):227–231. https://doi.org/10.1039/A901366K

    Article  CAS  PubMed  Google Scholar 

  45. Lunyera J, Mohottige D, Von Isenburg M, Jeuland M, Patel UD, Stanifer JW (2016) CKD of uncertain etiology: a systematic review. Clin J Am Soc Nephrol 11(3):379–385. https://doi.org/10.2215/CJN.07500715

    Article  CAS  PubMed  Google Scholar 

  46. Uetani M, Kobayashi E, Suwazono Y, Honda R, Nishijo M, Nakagawa H, Kido T, Nogawa K (2006) Tissue cadmium (Cd) concentrations of people living in a Cd polluted area Japan. Biometals 19(5):521–525. https://doi.org/10.1007/s10534-005-5619-0

    Article  CAS  PubMed  Google Scholar 

  47. Satarug S, Baker JR, Reilly PE, Moore MR, Williams DJ (2002) Cadmium levels in the lung liver kidney cortex and urine samples from Australians without occupational exposure to metals. Arch Environ Health: an International Journal 57(1):69–77. https://doi.org/10.1080/00039890209602919

    Article  CAS  Google Scholar 

  48. Yoo YC, Lee SK, Yang JY, In SW, Kim KW, Chung KH, Chung MG, Choung SY (2002) Organ distribution of heavy metals in autopsy material from normal Korean. J Health Sci 48(2):186–194. https://doi.org/10.1248/jhs.48.186

    Article  CAS  Google Scholar 

  49. Satarug S (2018) Dietary cadmium intake and its effects on kidneys. Toxics 6(1):15. https://doi.org/10.3390/toxics6010015

    Article  CAS  PubMed Central  Google Scholar 

  50. Katulanda P, Wickramasinghe K, Mahesh JG, Rathnapala A, Constantine GR, Sheriff David RM, Fernando SS (2011) Prevalence and correlates of tobacco smoking in Sri Lanka. Asia Pac J Public Health 23(6):861–869. https://doi.org/10.1177/1010539509355599

    Article  PubMed  Google Scholar 

  51. Katulanda P, Ranasinghe C, Rathnapala A, Karunaratne N, Sheriff R, Matthews D (2014) Prevalence patterns and correlates of alcohol consumption and its’ association with tobacco smoking among Sri Lankan adults: a cross-sectional study. BMC Public Health 14(1):612. https://doi.org/10.1186/1471-2458-14-612

    Article  PubMed  PubMed Central  Google Scholar 

  52. Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium environmental exposure and health outcomes. Environ Health Perspect 118(2):182–190. https://doi.org/10.1289/ehp.0901234

    Article  CAS  PubMed  Google Scholar 

  53. Chen Z, Myers R, Wei T, Bind E, Kassim P, Wang G, Ji Y, Hong X, Caruso D, Bartell T, Gong Y, Strickland P, Navas-Acien A, Guallar E, Wang X (2014) Placental transfer and concentrations of cadmium mercury lead and selenium in mothers newborns and young children. J Expo Sci Environ Epidemiol 24(5):537–544. https://doi.org/10.1038/jes.2014.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishizaki M, Suwazono Y, Kido T, Nishijo M, Honda R, Kobayashi E, Nogawa K, Nakagawa H (2015) Estimation of biological half-life of urinary cadmium in inhabitants after cessation of environmental cadmium pollution using a mixed linear model. Food Addit Contam Part A 32(8):1273–1276. https://doi.org/10.1080/19440049.2015.1052573

    Article  CAS  Google Scholar 

  55. Gundacker C, Hengstschläger M (2012) The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr 162(9–10):201–206. https://doi.org/10.1007/s10354-012-0074-3

    Article  PubMed  Google Scholar 

  56. Rahimi E, Hashemi M, Baghbadorani ZT (2009) Determination of cadmium and lead in human milk. Int J Environ Sci Technol 6(4):671–676. https://doi.org/10.1007/BF03326108

    Article  CAS  Google Scholar 

  57. Winiarska-Mieczan A (2014) Cadmium lead copper and zinc in breast milk in Poland. Biol Trace Elem Res 157(1):36–44. https://doi.org/10.1007/s12011-013-9870-x

    Article  CAS  PubMed  Google Scholar 

  58. Vollset M, Iszatt N, Enger Ø, Gjengedal ELF, Eggesbø M (2019) Concentration of mercury cadmium and lead in breast milk from Norwegian mothers: association with dietary habits amalgam and other factors. Sci Total Environ 677:466–473. https://doi.org/10.1016/j.scitotenv.2019.04.252

    Article  CAS  PubMed  Google Scholar 

  59. Bansa DK, Awua AK, Boatin R, Adom T, Brown-Appiah EC, Amewosina KK, Diaba A, Datoghe D, Okwabi W (2017) Cross-sectional assessment of infants’ exposure to toxic metals through breast milk in a prospective cohort study of mining communities in Ghana. BMC Public Health 17(1):1–12. https://doi.org/10.1186/s12889-017-4403-8

    Article  CAS  Google Scholar 

  60. Cherkani-Hassani A, Ghanname I, Mouane N (2017) Assessment of cadmium levels in human breast milk and the affecting factors: a systematic review 1971–2014. Crit Rev Food Sci Nutr 57(11):2377–2391. https://doi.org/10.1080/10408398.2015.1057633

    Article  CAS  PubMed  Google Scholar 

  61. Wagner GJ, Yeargan R (1986) Variation in cadmium accumulation potential and tissue distribution of cadmium in tobacco. Plant Physiol 82(1):274–279. https://doi.org/10.1104/pp.82.1.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chaney RL, Ryan JA, Li YM, Brown SL (1999) Soil cadmium as a threat to human health. In: Mc Laughlin MJ, Singh BR (eds) Cadmium in soils and plants. Developments in plant and soil sciences, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4473-5_9

    Chapter  Google Scholar 

  63. World Health Organization IARC Working Group on the Evaluation of Carcinogenic Risks to Humans International Agency for Research on Cancer (2004) Betel-quid and areca-nut chewing and some areca-nut-derived nitrosamines (Vol 85) IARC. https://www.ncbi.nlm.nih.gov/books/NBK316567/pdf/Bookshelf_NBK316567.pdf. Accessed 05 Aug 2020

  64. Al-Rmalli SW, Jenkins RO, Haris PI (2011) Betel quid chewing elevates human exposure to arsenic, cadmium and lead. J Hazard Mater 190(1–3):69–74. https://doi.org/10.1016/j.jhazmat.2011.02.068

    Article  CAS  PubMed  Google Scholar 

  65. Arain SS, Kazi TG, Afridi HI, Brahman KD, Naeemullah KS, Panhwar AH, Kamboh MA, Memon JR (2015) Preconcentration and determination of lead and cadmium levels in blood samples of adolescent workers consuming smokeless tobacco products in Pakistan. Environ Monit Assess 187(5):309. https://doi.org/10.1007/s10661-015-4543-1

    Article  CAS  PubMed  Google Scholar 

  66. Zheng W, Li XM, Wang F, Yang Q, Deng P, Zeng GM (2008) Adsorption removal of cadmium and copper from aqueous solution by areca—a food waste. J Hazard Mater 157(2-3):490–495. https://doi.org/10.1016/j.jhazmat.2008.01.029

    Article  CAS  PubMed  Google Scholar 

  67. Mena C, Cabrera C, Lorenzo ML, Lopez MC (1996) Cadmium levels in wine beer and other alcoholic beverages: possible sources of contamination. Sci Total Environ 181(3):201–208. https://doi.org/10.1016/0048-9697(95)05010-8

    Article  CAS  PubMed  Google Scholar 

  68. Lee B, Ha J (2011) The effects of smoking and drinking on blood lead and cadmium levels: data from the fourth Korea national health and nutrition examination survey. Occup Environ Med 68(Suppl 1):A93–A93. https://doi.org/10.1136/oemed-2011-100382.305

    Article  Google Scholar 

  69. Kim EC, Cho E, Jee D (2014) Association between blood cadmium level and age-related macular degeneration in a representative Korean population. Investig Ophthalmol Vis Sci 55(9):5702–5710. https://doi.org/10.1167/iovs.14-14774

    Article  CAS  Google Scholar 

  70. Ahn B, Kim SH, Park MJ (2017) Blood cadmium concentrations in Korean adolescents: from the Korea National Health and Nutrition Examination Survey 2010–2013. Int J Hyg Environ Health 220(1):37–42. DOI. https://doi.org/10.1016/j.ijheh.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  71. Brzóska MM, Galażyn-Sidorczuk M, Dzwilewska I (2013) Ethanol consumption modifies the body turnover of cadmium: a study in a rat model of human exposure. J Appl Toxicol 33(8):784–798. https://doi.org/10.1002/jat.2734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the academic and non-academic staff of department of Forensic Medicine & Toxicology, Faculty of Medicine, University of Colombo and Sri Lanka Institute of Nanotechnology (SLINTEC) for the technical support for sample processing and analysis.

Funding

This work was supported by the National Research Council (NRC) of Sri Lanka (Grant No: 15–017).

Author information

Authors and Affiliations

Authors

Contributions

• Research idea, study design and data acquisition—SG, MR.

• Statistical analysis—SG, JG, TR, PD.

• Drafting of manuscript, reviewing and revisions—SG, MR, JG, TR, PD.

• Supervision and mentorship—SG, JG.

Corresponding author

Correspondence to S. A. Gunawardena.

Ethics declarations

Conflict of Interest

All the authors declare that there are no conflicts of interest in conducting or publishing this study.

Ethical Approval

Ethical approval for this study was granted by Ethics Review Committee (ERC) of Faculty of Medicine, University of Colombo, Sri Lanka (No: EC 15-175).

Consent to Participate/Consent for Publication

Samples were collected during the forensic autopsies with informed written consent from the next of kin with specific information given regarding publication of data.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunawardena, S.A., Ranasinghe, M., Ranchamali, T. et al. Kidney Cadmium Concentrations in an Urban Sri Lankan Population: an Autopsy Study. Biol Trace Elem Res 199, 4045–4054 (2021). https://doi.org/10.1007/s12011-020-02541-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02541-w

Keywords

Navigation