Skip to main content
Log in

Zinc Oxide Nanoparticle Induces Apoptosis in Human Epidermoid Carcinoma Cells Through Reactive Oxygen Species and DNA Degradation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO-NPs) are used immensely in technology and medicine, but very less is known about toxicity mechanism to human epidermal cells. The objective of this study was to evaluate possible anticancer properties of ZnO-NPs on human epidermoid carcinoma cells using MTT assay, measurement of reactive oxygen species, DNA fragmentation, and nuclear condensation. ZnO-NPs were synthesized by sol-gel method using zinc acetate dihydrate, ethylene glycol, and 2-propyl alcohol. Numerous characterization techniques such as UV-visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, and dynamic light scattering spectroscopy were used to confirm synthesis, purity, optical, and surface characteristics, size, shape, and distribution of ZnO-NPs. Our finding showed that ZnO-NPs considerably decreased cell viability of human epidermoid carcinoma A431 cells with a parallel increase in nuclear condensation and DNA fragmentation in a dose dependent manner. Moreover, real time PCR expression study showed that treatment of human epidermoid carcinoma cells with ZnO-NPs trigger increased expression of tumor suppressor gene p53, bax, and caspase-3 while downregulate antiapoptotic gene bcl-2. Thus ZnO-NPs induce apoptosis in A431 cells through DNA degradation and generation of reactive oxygen species via p53, bax/bcl-2, and caspase pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today 4(1):37–51

    Article  CAS  Google Scholar 

  2. Mann S (2008) Life as a nanoscale phenomenon. Ang Chem Int Edn 47(29):5306–5320

    Article  CAS  Google Scholar 

  3. Wang ZL (2001) Characterization of nanophase materials. Part Part Sys Char 18(3):142–165

    Article  Google Scholar 

  4. Whitesides GM (2003) The right size in nanobiotechnology. Nat Biotechnol 21(10):1161–1165

    Article  CAS  PubMed  Google Scholar 

  5. Khan MA, Khan MJ (2018) Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. Art Cells Nanomed Biotechnol 46(sup1):1149–1158

    Article  CAS  Google Scholar 

  6. Pearce ME, Melanko JB, Salem AK (2007) Multifunctional nanorods for biomedical applications. Pharm Res 24(12):2335–2352

    Article  CAS  PubMed  Google Scholar 

  7. Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine-Recent advances. Adv Drug Del Rev 65(5):689–702

    Article  CAS  Google Scholar 

  8. Rodzinski A, Guduru R, Liang P, Hadjikhani A, Stewart T, Stimphil E, Runowicz C, Cote R, Altman N, Datar R, Khizroev S (2016) Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci Rep 6(1):20867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59(18):8149–8167

    Article  CAS  PubMed  Google Scholar 

  10. Rahong S, Yasui T, Kaji N, Baba Y (2016) Recent developments in nanowires for bio-applications from molecular to cellular levels. Lab Chip 16(7):1126–1138

    Article  CAS  PubMed  Google Scholar 

  11. Sun T, Tsang WM (2018) Nanowires for biomedical applications. In: Narayan R (ed.) Nanobiomaterials, Woodhead, pp 95-111.

  12. Khan MJ, Svedberg A, Singh AA, Ansari MS, Karim Z (2019) Use of nanostructured polymer in the delivery of drugs for cancer therapy. In: Swain SK, Jawaid M (ed) Nanostructured Polymer Composites for Biomedical Applications, Elsevier, pp 261-276.

  13. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mat Sci: Mat Med 16(10):933–946

    CAS  Google Scholar 

  14. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting and drug delivery. ACS Nano 2(5):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szabó T, Németh J, Dékány I (2003) Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloid Surf A: Physicochem Eng Asp 230(1):23–35

    Article  CAS  Google Scholar 

  16. Osmond-McLeod M, McCall M (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicol 4:15–41

    Article  CAS  Google Scholar 

  17. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    Article  CAS  PubMed  Google Scholar 

  18. Fabricant RN, De Larco JE, Todaro GJ (1977) Nerve growth factor receptors on human melanoma cells in culture. Proc Nat Acad Sci USA 74(2):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal 22(1):64–75

    Article  CAS  PubMed  Google Scholar 

  20. Huang C-C, Aronstam RS, Chen D-R, Huang Y-W (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in vitro 24(1):45–55

    Article  CAS  PubMed  Google Scholar 

  21. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farnebo M, Bykov VJ, Wiman KG (2010) The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophy Res Comm 396(1):85–89

    Article  CAS  Google Scholar 

  23. Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2(4):466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roth JA, Swisher SG, Meyn RE (1999) p53 tumor suppressor gene therapy for cancer. Oncology (Williston Park, NY) 13(10 Suppl 5):148–154

    CAS  Google Scholar 

  25. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(8):1378–1386

  26. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    Article  CAS  PubMed  Google Scholar 

  27. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu S-Y, Yan T-M, Chen S-L (2000) Characteristics of sol-gel synthesis of ZnO-based powders. J Mat Sci Lett 19:349–352

    Article  CAS  Google Scholar 

  29. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Rad Biol Med 27(5-6):612–616

    Article  CAS  PubMed  Google Scholar 

  31. Lee EB, Cheon MG, Cui J, Lee YJ, Seo EK, Jang HH (2017) The quinone-based derivative, HMNQ induces apoptotic and autophagic cell death by modulating reactive oxygen species in cancer cells. Oncotarget 8(59):99637–99648

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. J Biotech Histochem 70(5):220–233

  33. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  34. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  35. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285(2):194–204

    Article  CAS  PubMed  Google Scholar 

  36. Rabbani G, Khan MJ, Ahmad A, Maskat MY, Khan RH (2014) Effect of copper oxide nanoparticles on the conformation and activity of β-galactosidase. Colloids and Surfaces B: Biointerfaces 123:96–105

    Article  CAS  PubMed  Google Scholar 

  37. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol 2012:372505

    Article  CAS  Google Scholar 

  38. Zak AK, Abrishami ME, Majid WHA, Yousefi R, Hosseini SM (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceramics Int 37(1):393–398

    Article  CAS  Google Scholar 

  39. Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mat Sci 29(6):641–645

    Article  CAS  Google Scholar 

  40. Panchakarla LS, Govindaraj A, Rao CNR (2007) Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols. J Cluster Sci 18(3):660–670

  41. Araújo Júnior EA, Nobre FX, Sousa GDS, Cavalcante LS, de Morais Chaves Santos MR, Souza FL, de Matos JME (2017) Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. RSC Adv 7(39):24263–24281

    Article  Google Scholar 

  42. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theoret ApplPhys 8(4):123–134

    Article  Google Scholar 

  43. Saraste A, Pulkki K (2000) Morphologic and biochemical markers of apoptosis. Card Res 45:528–537

    Article  CAS  Google Scholar 

  44. Riihilä P, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Grénman R, Peltonen S, Peltonen J, Pihlajaniemi T, Heljasvaara R, Kähäri V-M (2017) Complement component C3 and complement factor B promote growth of cutaneous squamous cell carcinoma. Am J Pathol 187(5):1186–1197

    Article  PubMed  CAS  Google Scholar 

  45. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29):295103–295103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7(2):184–192

  47. Bai D-P, Zhang X-F, Zhang G-L, Huang Y-F, Gurunathan S (2017) Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomed 12:6521–6535

    Article  CAS  Google Scholar 

  48. Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH (2017) Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed 12:1621–1637

    Article  CAS  Google Scholar 

  49. Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199(3):389–397

    Article  CAS  PubMed  Google Scholar 

  50. Sherr CJ (2004) Principles of tumor suppression. Cell 116(2):235–246

    Article  CAS  PubMed  Google Scholar 

  51. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410

    Article  CAS  PubMed  Google Scholar 

  52. Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644(2-3):83–94

    Article  CAS  PubMed  Google Scholar 

  53. Popgeorgiev N, Jabbour L, Gillet G (2018) Subcellular localization and dynamics of the Bcl-2 family of proteins. Front Cell Dev Biol 6:13–13

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2013) Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol In Vitro 27(2):731–738

    Article  CAS  PubMed  Google Scholar 

  55. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8):852–870

    Article  CAS  PubMed  Google Scholar 

  56. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(Pt 4):437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9(5):505–512

    Article  CAS  PubMed  Google Scholar 

  58. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798

  59. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7(7):532–542

    Article  CAS  PubMed  Google Scholar 

  60. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8(5):361–375

    Article  CAS  PubMed  Google Scholar 

  61. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach. Nat Rrev Drug Discov 8(7):579–591

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Deanship of Scientific Research, King Abdulaziz University, Saudi Arabia (Grant Number: DF-708-130-1441). AA thanks to DSR, King Abdulaziz University, Saudi Arabia for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd Jahir Khan or Abrar Ahmad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.J., Ahmad, A., Khan, M.A. et al. Zinc Oxide Nanoparticle Induces Apoptosis in Human Epidermoid Carcinoma Cells Through Reactive Oxygen Species and DNA Degradation. Biol Trace Elem Res 199, 2172–2181 (2021). https://doi.org/10.1007/s12011-020-02323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02323-4

Keywords

Navigation