Skip to main content
Log in

The Association Between Trace Elements Exposure and the Cognition in the Elderly in China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the association between aluminum (Al), arsenic (As), barium (Ba), cobalt (Co), manganese (Mn), selenium (Se), strontium (Sr), thallium (Tl), and vanadium (V) levels in whole blood and the cognitive ability of people over 60 years old. A total of 1217 eligible participants were enrolled in our study in Lu’an city, Anhui province, China. The inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the concentration of nine trace elements in the whole blood, which reflect their exposure levels. Mini-mental State Examination (MMSE) scale was employed to screen the cognitive function of the elderly. Logistic regression was applied to assess the associations of nine whole blood trace elements with cognition. In the work, it has found that high levels of whole blood As and Se are risk factors for cognitive dysfunction. As and Se quartile were correlated with increased risk of cognitive dysfunction, and with the odds ratio (OR) of 2.06 (95% CI 1.30–3.25; p-trend = 0.002), 1.947 (95% CI 1.20–3.17; p-trend = 0.007) in the highest quartile. However, high concentration of Al, V, and Ba in whole blood were protective factors for cognitive function [OR = 0.63 (95% CI 0.40–0.98; p-trend = 0.040), 0.549 (95% CI 0.36–0.85; p-trend = 0.007), 0.460 (95% CI 0.28–0.75; p-trend = 0.002) respectively]. The study suggested that the exposure of some trace elements (As, Se) were associated with the increased risk of cognitive dysfunction; on the contrary, other elements (Al, V, Ba) could be protective factor for cognitive function. These findings need to be confirmed in additional research of a large elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu WX, Jiang SL, Zhao Q, Zhang K, Wei XY, Zhou T, Liu DY, Zhou H, Zeng Q, Cheng LM (2018) Environmental exposure to metals and the risk of hypertension: a cross-sectional study in China. Environ Pollut 233:670–678

    CAS  PubMed  Google Scholar 

  2. Abuduwailil J, Zhang ZY, Jiang FQ (2015) Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China. Environ Sci Pollut Res 22(18):14018–14031

    CAS  Google Scholar 

  3. Bian B, Zhou LJ, Li L, Lv L, Fan YM (2015) Risk assessment of heavy metals in air, water, vegetables, grains, and related soils irrigated with biogas slurry in Taihu Basin, China. Environ Sci Pollut Res 22(10):7794–7807

    CAS  Google Scholar 

  4. Li Y, Wang H, Wang H, Yin F, Yang X, Hu Y (2014) Heavy metal pollution in vegetables grown in the vicinity of a multi-metal mining area in Gejiu, China: total concentrations, speciation analysis, and health risk. Environ Sci Pollut Res 21(21):12569–12582

    CAS  Google Scholar 

  5. Feng W, He X, Chen M, Deng S, Qiu G, Li X, Liu C, Li J, Deng Q, Huang S (2015) Urinary metals and heart rate variability: a cross-sectional study of urban adults in Wuhan, China. Environ Health Perspect 123(3):217–222

    PubMed  Google Scholar 

  6. Singla N, Dhawan DK (2017) Zinc improves cognitive and neuronal dysfunction during aluminium-induced neurodegeneration. Mol Neurobiol 54(1):406–422

    CAS  PubMed  Google Scholar 

  7. Clarkson TW (1987) Metal toxicity in the central nervous system. Environ Health Perspect 75:59–64

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fenga C, Gangemi S, Alibrandi A, Costa C, Micali E (2016) Relationship between lead exposure and mild cognitive impairment. J Prev Med Hyg 57(4):E205–E210

    CAS  PubMed  PubMed Central  Google Scholar 

  9. McLachlan DRC, Bergeron C, Alexandrov PN, Walsh WJ, Pogue AI, Percy ME, Kruck TPA, Fang Z, Sharfman NM, Jaber V et al (2019) Aluminum in neurological and neurodegenerative disease. Mol Neurobiol 56(2):1531–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong Y, Stewart T, Zhang Y, Shi M, Tan C, Li X, Yuan L, Mehrotra A, Zhang J, Yang X (2019) Anti-diabetic vanadyl complexes reduced Alzheimer's disease pathology independent of amyloid plaque deposition. Sci China Life Sci 62(1):126–139

    CAS  PubMed  Google Scholar 

  11. H-k S, Wong C-S, Huang B, K-l Y, W-l W, Chu YCT (2013) Assessing local patients' knowledge and awareness of radiation dose and risks associated with medical imaging: a questionnaire study. J Med Imaging Radiat Oncol 57(1):38–44

    Google Scholar 

  12. Petersson SD, Philippou E (2016) Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr 7(5):889–904

    PubMed  PubMed Central  Google Scholar 

  13. Basun H, Forssell LG, Wetterberg L, Winblad B (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease. J Neural Transm Park Dis Dement Sect 3(4):231–258

    CAS  PubMed  Google Scholar 

  14. Jin K, Simpkins JW, Ji X, Leis M, Stambler I (2015) The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis 6(1):1–5

    PubMed  Google Scholar 

  15. Xue J, Li J, Liang J, Chen S (2018) The prevalence of mild cognitive impairment in China: a systematic review. Aging Dis 9(4):706–715

    PubMed  PubMed Central  Google Scholar 

  16. Backman L, Jones S, Berger AK, Laukka EJ, Small BJ (2004) Multiple cognitive deficits during the transition to Alzheimer's disease. J Intern Med 256(3):195–204

    CAS  PubMed  Google Scholar 

  17. Arnaiz E, Almkvist O (2003) Neuropsychological features of mild cognitive impairment and preclinical Alzheimer's disease. Acta Neurol Scand Suppl 179:34–41

    PubMed  Google Scholar 

  18. Karantzoulis S, Galvin JE (2011) Distinguishing Alzheimer's disease from other major forms of dementia. Expert Rev Neurother 11(11):1579–1591

    PubMed  PubMed Central  Google Scholar 

  19. Goedert M, Spillantini MG (2006) A century of Alzheimer's disease. Science 314(5800):777–781

    CAS  PubMed  Google Scholar 

  20. Karlawish J (2011) Addressing the ethical, policy, and social challenges of preclinical Alzheimer disease. Neurology 77(15):1487–1493

    PubMed  PubMed Central  Google Scholar 

  21. Thies W, Bleiler L, Alzheimer's A (2013) 2013 Alzheimer's disease facts and figures Alzheimer's Association. Alzheimers Dement 9(2):208–245

    Google Scholar 

  22. Hilal S, Tan CS, Xin X, Amin SM, Wong TY, Chen C, Venketasubramanian N, Ikram MK (2017) Prevalence of cognitive impairment and dementia in Malays - epidemiology of dementia in Singapore study. Curr Alzheimer Res 14(6):620–627

    CAS  PubMed  Google Scholar 

  23. Petersen RC (2016) Mild cognitive impairment. Continuum (Minneapolis, Minn) 22(2 dementia):404–418

    Google Scholar 

  24. Gray SL, Hanlon JT, Landerman LR, Artz M, Schmader KE, Fillenbaum GG (2003) Is antioxidant use protective of cognitive function in the community-dwelling elderly? Am J Geriatr Pharmacother 1(1):3–10

    CAS  PubMed  Google Scholar 

  25. Akbaraly TN, Hininger-Favier I, Carriere I (2008) Plasma selenium over time and cognitive decline in the elderly (vol 18, pg 52, 2007). Epidemiology 19(1):168–168

    Google Scholar 

  26. Cardoso B, Szymlek-Gay E, Roberts B, Formica M, Gianoudis J, O’Connell S, Nowson C, Daly RJN: Selenium status is not associated with cognitive performance: a cross-sectional study in 154 Older Australian adults

  27. Lacour M, Zunder T, Restle A, Schwarzer G (2004) No evidence for an impact of selenium supplementation on environment associated health disorders—a systematic review. Int J Hyg Environ Health 207(1):1–13

    CAS  PubMed  Google Scholar 

  28. Cardoso BR, Hare DJ, Bush AI, Li QX, Fowler CJ, Masters CL, Martins RN, Ganio K, Lothian A, Mukherjee S (2017) Selenium levels in serum, red blood cells, and cerebrospinal fluid of Alzheimer's disease patients: a report from the Australian imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). J Alzheimers Dis 57(1):183–193

    CAS  PubMed  Google Scholar 

  29. Berr C, Balansard B, Arnaud J, Roussel AM, Alperovitch A (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. Etude du Vieillissement Arteriel. J Am Geriatr Soc 48(10):1285–1291

    CAS  PubMed  Google Scholar 

  30. Schultz-Larsen K, Lomholt RK, Kreiner S (2007) Mini-mental status examination: a short form of MMSE was as accurate as the original MMSE in predicting dementia. J Clin Epidemiol 60(3):260–267

    PubMed  Google Scholar 

  31. Heyman N, Tsirulnicov T, Ben Natan M (2017) Prediction of geriatric rehabilitation outcomes: comparison between three cognitive screening tools. Geriatr Gerontol Int 17(12):2507–2513

    PubMed  Google Scholar 

  32. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    CAS  PubMed  Google Scholar 

  33. Zhao B, Shang S, Li P, Chen C, Dang L, Jiang Y, Wang J, Huo K, Deng M, Wang J (2019) The gender- and age- dependent relationships between serum lipids and cognitive impairment: a cross-sectional study in a rural area of Xi'an, China. Lipids Health Dis 18(1):4

  34. Shang S, Li P, Deng M, Jiang Y, Chen C, Qu Q (2016) The age-dependent relationship between blood pressure and cognitive impairment: a cross-sectional study in a rural area of Xi'an, China. PLoS One 11(7):e0159485

    PubMed  PubMed Central  Google Scholar 

  35. Mueller C, Schrag M, Crofton A, Stolte J, Muckenthaler MU, Magaki S, Kirsch W (2012) Altered serum Iron and copper homeostasis predicts cognitive decline in mild cognitive impairment. Journal of Alzheimers Disease 29(2):341–350

    CAS  Google Scholar 

  36. Yedomon B, Menudier A, Des Etangs FL, Anani L, Fayomi B, Druet-Cabanac M, Moesch C (2017) Biomonitoring of 29 trace elements in whole blood from inhabitants of Cotonou (Benin) by ICP-MS. J Trace Elem Med Biol 43:38–45

    CAS  PubMed  Google Scholar 

  37. Skalny AV, Zhukovskaya EV, Kireeva GN, Skalnaya MG, Grabeklis AR, Radysh IV, Shakieva RA, Nikonorov AA, Tinkov AA (2018) Whole blood and hair trace elements and minerals in children living in metal-polluted area near copper smelter in Karabash, Chelyabinsk region, Russia. Environ Sci Pollut Res 25(3):2014–2020

    CAS  Google Scholar 

  38. Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano JH, Ahsan H (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the health effects of arsenic longitudinal study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239(2):184–192

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fu C, Guo J, Pan J, Qi J, Zhou W (2009) Potential ecological risk assessment of heavy metal pollution in sediments of the Yangtze River within the Wanzhou section, China. Biol Trace Elem Res 129(1–3):270–277

    CAS  PubMed  Google Scholar 

  40. Gong G, Hargrave KA, Hobson V, Spallholz J, Boylan M, Lefforge D, O'Bryant SE (2011) Low-level groundwater arsenic exposure impacts cognition: a project FRONTIER study. J Environ Health 74(2):16–22

    CAS  PubMed  Google Scholar 

  41. Liu J, Gao Y, Liu H, Sun J, Liu Y, Wu J, Li D, Sun D (2017) Assessment of relationship on excess arsenic intake from drinking water and cognitive impairment in adults and elders in arsenicosis areas. Int J Hyg Environ Health 220(2):424–430

    CAS  PubMed  Google Scholar 

  42. Prakash C, Soni M, Kumar V (2016) Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: a review. J Appl Toxicol 36(2):179–188

    CAS  PubMed  Google Scholar 

  43. Varikasuvu SR, Prasad SV, Kothapalli J, Manne M (2019) BRAIN selenium in Alzheimer's disease (BRAIN SEAD study): a systematic review and meta-analysis. Biol Trace Elem Res 189(2):361–369

    CAS  PubMed  Google Scholar 

  44. Gao S, Jin Y, Hall KS, Liang C, Unverzagt FW, Ji R, Murrell JR, Cao J, Shen J, Ma F (2007) Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165(8):955–965

    PubMed  PubMed Central  Google Scholar 

  45. Shahar A, Patel KV, Semba RD, Bandinelli S, Shahar DR, Ferrucci L, Guralnik JM (2010) Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord 25(12):1909–1915

    PubMed  PubMed Central  Google Scholar 

  46. Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, Yee M, Crowley J, Schmitt FA (2017) Association of antioxidant supplement use and dementia in the prevention of Alzheimer's disease by vitamin E and selenium trial (PREADViSE). Jama Neurology 74(5):567–573

    PubMed  PubMed Central  Google Scholar 

  47. Harrington JM, Young DJ, Essader AS, Sumner SJ, Levine KE (2014) Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a Mineralomics method. Biol Trace Elem Res 160(1):132–142

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen X-L, Yu J-H, Zhang D-F, Xie J-X, Jiang H (2014) Positive relationship between mortality from Alzheimer's disease and soil metal concentration in mainland China. Journal of Alzheimers Disease 42(3):893–900

    CAS  Google Scholar 

  49. Dartigues JF, Gagnon M, Michel P, Letenneur L, Commenges D, Barberger-Gateau P, Auriacombe S, Rigal B, Bedry R, Alperovitch A (1991) The Paquid research program on the epidemiology of dementia. Methods and initial results. Rev Neurol 147(3):225–230

    CAS  PubMed  Google Scholar 

  50. Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues J-F (2009) Aluminum and silica in drinking water and the risk of Alzheimer's disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169(4):489–496

    PubMed  Google Scholar 

  51. Jean H, Emard JF, Thouez JP, Houde L, Robitaille Y, Mathieu J, Boily C, Daoud N, Beaudry M, Cholette A (1996) Alzheimer's disease: preliminary study of spatial distribution at birth place. Soc Sci Med 42(6):871–878

    CAS  PubMed  Google Scholar 

  52. Martyn CN, Coggon DN, Inskip H, Lacey RF, Young WF (1997) Aluminum concentrations in drinking water and risk of Alzheimer's disease. Epidemiology (Cambridge, Mass) 8(3):281–286

    CAS  Google Scholar 

  53. Forster DP, Newens AJ, Kay DW, Edwardson JA (1995) Risk factors in clinically diagnosed presenile dementia of the Alzheimer type: a case-control study in northern England. J Epidemiol Community Health 49(3):253–258

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Paglia G, Miedico O, Cristofano A, Vitale M, Angiolillo A, Chiaravalle AE, Corso G, Di Costanzo A (2016) Distinctive pattern of serum elements during the progression of Alzheimer's disease. Sci Rep 6(1):22769

  55. Rehder D (2013) Vanadium. Its role for humans. Met Ions Life Sci 13:139–169

    PubMed  PubMed Central  Google Scholar 

  56. Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M (2004) Vanadium—an element of atypical biological significance. Toxicol Lett 150(2):135–143

    CAS  PubMed  Google Scholar 

  57. Cusick SE, Jaramillo EG, Moody EC, Ssemata AS, Bitwayi D, Lund TC, Mupere E (2018) Assessment of blood levels of heavy metals including lead and manganese in healthy children living in the Katanga settlement of Kampala, Uganda. Bmc Public Health 18(1):717

  58. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA (2015) Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16(3):493–508

    PubMed  Google Scholar 

Download references

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding

Grants for Major Projects on College Leading Talent Team Introduced of Anhui (0303011224) and National Natural Science Foundation of China (81872662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sheng.

Ethics declarations

The study was approved by the Biomedical Ethics Committee of Anhui Medical University. All participants provided the written informed consent.

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Yu, J., Fan, Y. et al. The Association Between Trace Elements Exposure and the Cognition in the Elderly in China. Biol Trace Elem Res 199, 403–412 (2021). https://doi.org/10.1007/s12011-020-02154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02154-3

Keywords

Navigation