Skip to main content

Advertisement

Log in

Association of Urinary and Blood Concentrations of Heavy Metals with Measures of Bone Mineral Density Loss: a Data Mining Approach with the Results from the National Health and Nutrition Examination Survey

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Osteoporosis and its consequence of fragility fracture represent a major public health problem. Human exposure to heavy metals has received considerable attention over the last decades. However, little is known about the influence of co-exposure to multiple heavy metals on bone density. The present study aimed to examine the association between exposure to metals and bone mineral density (BMD) loss. Blood and urine concentrations of 20 chemical elements were selected from 3 cycles (2005–2010) NHANES (National Health and Nutrition Examination Survey), in which we included white women over 50 years of age and previously selected for BMD testing (N = 1892). The bone loss group was defined as participants having T-score < − 1.0, and the normal group was defined as participants having T-score ≥ − 1.0. We developed classification models based on support vector machines capable of determining which factors could best predict BMD loss. The model which included the five-best features-selected from the random forest were age, body mass index, urinary concentration of arsenic (As), cadmium (Cd), and tungsten (W), which have achieved high scores for accuracy (92.18%), sensitivity (90.50%), and specificity (93.35%). These data demonstrate the importance of these factors and metals to the classification since they alone were capable of generating a classification model with a high prediction of accuracy without requiring the other variables. In summary, our findings provide insight into the important, yet overlooked impact that arsenic, cadmium, and tungsten have on overall bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cooper C, Campion G, Melton LJ (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289

    Article  CAS  Google Scholar 

  2. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287. https://doi.org/10.1016/S0140-6736(10)62349-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Compston JE, Mcclung MR, Leslie WD (2019) Osteoporosis. Lancet 393:364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

    Article  CAS  PubMed  Google Scholar 

  4. Boyanov M (2009) The diagnosis of osteoporosis and the fracture risk assessment. Endokrinologya 14:30–36

    Google Scholar 

  5. ClinRisk. Welcome to the QFracture-2016 risk calculator. https://qfracture.org/. Accessed 15 Oct 2019

  6. Garvan Institute. Bone fracture risk calculator. https://www.garvan.org.au/bone-fracture-risk. Accessed 15 Oct 2019

  7. University of Sheffield. Fracture risk assessment tool. https://www.sheffield.ac.uk/FRAX/. Accessed 15 Oct 2019

  8. Agency for Toxic Substances and Disease Registry (ATSDR) (2017) Substance priority list. https://www.atsdr.cdc.gov/SPL/. Accessed 3 Jan 2020

  9. Schümann K, Elsenhans B (2002) The impact of food contaminants on the bioavailability of trace metals. J Trace Elem Med Biol 16:139–144

    Article  Google Scholar 

  10. Milnerowicz H, Ściskalska M, Dul M (2015) Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke. J Trace Elem Med Biol 29:1–10

    Article  CAS  Google Scholar 

  11. Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231

    Article  CAS  Google Scholar 

  12. Rodríguez J, Mandalunis PM (2018) A review of metal exposure and its effects on bone health. J Toxicol 2018:. https://doi.org/10.1155/2018/4854152

  13. Brzóska MM, Moniuszko-Jakoniuk J (2005) Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol Appl Pharmacol 202:68–83. https://doi.org/10.1016/j.taap.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  14. Brzóska MM, Moniuszko-Jakoniuk J (2004) Low-level exposure to cadmium during the lifetime increases the risk of osteoporosis and fractures of the lumbar spine in the elderly: studies on a rat model of human environmental exposure. Toxicol Sci 82:468–477. https://doi.org/10.1093/toxsci/kfh275

    Article  CAS  PubMed  Google Scholar 

  15. Wallin M, Barregard L, Sallsten G, Lundh T, Karlsson MK, Lorentzon M, Ohlsson C, Mellström D (2016) Low-level cadmium exposure is associated with decreased bone mineral density and increased risk of incident fractures in elderly men: the MrOS Sweden Study. J Bone Miner Res 31:732–741. https://doi.org/10.1002/jbmr.2743

    Article  CAS  PubMed  Google Scholar 

  16. Engström A, Michaëlsson K, Vahter M, Julin B, Wolk A, Åkesson A (2012) Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone 50:1372–1378. https://doi.org/10.1016/j.bone.2012.03.018

    Article  CAS  PubMed  Google Scholar 

  17. Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8:55–64

    Article  CAS  Google Scholar 

  18. Wong AKO, Beattie KA, Bhargava A, Cheung M, Webber CE, Chettle DR, Papaioannou A, Adachi JD, Canadian Multicentre Osteoporosis Study (CaMos) Research Group (2015) Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women. Bone 79:58–64. https://doi.org/10.1016/j.bone.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levin R, Brown MJ, Kashtock ME, Jacobs DE, Whelan EA, Rodman J, Schock MR, Padilla A, Sinks T (2008) Lead exposures in U.S. children, 2008: implications for prevention. Environ. Health Perspect 116:1285–1293

    Article  CAS  Google Scholar 

  20. Bruno A. Rocha, Alexandros G. Asimakopoulos, Masato Honda, Nattane L. da Costa, Rommel M. Barbosa, Fernando Barbosa Jr KK (2017) Advanced data mining approaches in the assessment of urinary concentrations of bisphenols, chlorophenols, parabens and benzophenones in Brazilian children and their association to DNA damage. Environ Sci Technol

  21. Park SK, Zhao Z, Mukherjee B (2017) Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES. Environ Health 16:1–17. https://doi.org/10.1186/s12940-017-0310-9

    Article  CAS  Google Scholar 

  22. Kupsco A, Kioumourtzoglou MA, Just AC, Amarasiriwardena C, Estrada-Gutierrez G, Cantoral A, Sanders AP, Braun JM, Svensson K, Brennan KJM, Oken E, Wright RO, Baccarelli AA, Téllez-Rojo MM (2019) Prenatal metal concentrations and childhood cardiometabolic risk using Bayesian kernel machine regression to assess mixture and interaction effects. Epidemiology 30:263–273. https://doi.org/10.1097/EDE.0000000000000962

    Article  PubMed  PubMed Central  Google Scholar 

  23. Centers for Disease Control and Prevention (CDC) NC for HS (NCHS). National Health and Nutrition Examination Survey Data, 2009–2010. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2009. Accessed 3 Jan 2020

  24. Centers for Disease Control and Prevention (CDC) NC for HS (NCHS). National Health and Nutrition Examination Survey Data, 2007–2008. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2007. Accessed 3 Jan 2020

  25. Centers for Disease Control and Prevention (CDC) NC for HS (NCHS). National Health and Nutrition Examination Survey Data, 2005–2006. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2005. Accessed 3 Jan 2020

  26. Date AR, Gray AL (1989) Applications of inductively coupled plasma mass spectrometry. Blackie

  27. Kursa MB, Rudnicki WR (2010) Feature selection with the boruta package. J Stat Softw 36:1–13. https://doi.org/10.18637/jss.v036.i11

    Article  Google Scholar 

  28. R Core Team (2013) R: a language and environment for statistical computing. R Found. Stat. Comput

  29. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/bf00994018

    Article  Google Scholar 

  30. Noble WS (2006) What is a support vector machine? Nat Biotechnol 24:1565–1567. https://doi.org/10.1038/nbt1206-1565

    Article  CAS  PubMed  Google Scholar 

  31. Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23:1538–1546. https://doi.org/10.1016/j.drudis.2018.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Porter SE, Hanley EN (2001) The musculoskeletal effects of smoking. J Am Acad Orthop Surg 9:9–17

    Article  CAS  Google Scholar 

  33. Ferrari SL, Abrahamsen B, Napoli N et al (2018) Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int 29:2585–2596

    Article  CAS  Google Scholar 

  34. Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM, LEAP Study Group (2005) Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma 19:151–157. https://doi.org/10.1097/00005131-200503000-00001

    Article  PubMed  Google Scholar 

  35. Santiago HAR, Zamarioli A, Sousa Neto MD, Volpon JB (2017) Exposure to secondhand smoke impairs fracture healing in rats. Clin Orthop Relat Res 475:894–902. https://doi.org/10.1007/s11999-016-5184-6

    Article  PubMed  Google Scholar 

  36. Ren X, Mchale CM, Skibola CF et al (2011) An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 119:11–19

    Article  CAS  Google Scholar 

  37. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302

    Article  Google Scholar 

  38. World Health Organization (WHO) (2018) Guidelines for drinking-water quality, 3rd edition: volume 1 - recommendations. World Health Organization

  39. Dani SU (2013) Osteoresorptive arsenic intoxication. Bone 53:541–545. https://doi.org/10.1016/j.bone.2013.01.017

    Article  PubMed  Google Scholar 

  40. Hu YC, Cheng HL, Hsieh BS, Huang LW, Huang TC, Chang KL (2012) Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 50:1406–1415. https://doi.org/10.1016/j.bone.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  41. Marty M, Noirrit-Esclassan E, Diemer F (2016) Arsenic trioxide-induced osteo-necrosis treatment in a child: mini-review and case report. Eur Arch Paediatr Dent 17:419–422. https://doi.org/10.1007/s40368-016-0250-z

    Article  CAS  PubMed  Google Scholar 

  42. Dumlu A, Yalcinkaya S, Olgac V, Güvercin M (2007) Osteomyelitis due to arsenic trioxide use for tooth deviatlizaion. Int Endod J 40:317–322. https://doi.org/10.1111/j.0143-2885.2007.01230.x

    Article  CAS  PubMed  Google Scholar 

  43. Lever JH (2002) Paget’s disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone 31:434–436. https://doi.org/10.1016/S8756-3282(02)00833-5

    Article  CAS  PubMed  Google Scholar 

  44. Kuo CC, Moon KA, Wang SL, Silbergeld E, Navas-Acien A (2017) The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect 125:087001

    Article  Google Scholar 

  45. Kuo CC, Howard BV, Umans JG, Gribble MO, Best LG, Francesconi KA, Goessler W, Lee E, Guallar E, Navas-Acien A (2015) Arsenic exposure, arsenic metabolism, and incident diabetes in the strong heart study. Diabetes Care 38:620–627. https://doi.org/10.2337/dc14-1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang SL, Chiou JM, Chen CJ, Tseng CH, Chou WL, Wang CC, Wu TN, Chang LW (2003) Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environ Health Perspect 111:155–159. https://doi.org/10.1289/ehp.5457

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lai MS, Hsueh YM, Chen CJ, Shyu MP, Chen SY, Kuo TL, Wu MM, Tai TY (1994) Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139:484–492. https://doi.org/10.1093/oxfordjournals.aje.a117031

    Article  CAS  PubMed  Google Scholar 

  48. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

    Article  CAS  Google Scholar 

  49. Heilmeier U, Cheng K, Pasco C, Parrish R, Nirody J, Patsch JM, Zhang CA, Joseph GB, Burghardt AJ, Schwartz AV, Link TM, Kazakia G (2016) Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int 27:2791–2802. https://doi.org/10.1007/s00198-016-3614-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong XN, Qin A, Xu J, Wang X (2011) In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone 49:174–183. https://doi.org/10.1016/j.bone.2011.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rhee EJ, Kim YC, Lee WY, Jung CH, Sung KC, Ryu SH, Oh KW, Kim SW (2006) Comparison of insulin resistance and serum high-sensitivity C-reactive protein levels according to the fasting blood glucose subgroups divided by the newly recommended criteria for fasting hyperglycemia in 10 059 healthy Koreans. Metabolism 55:183–187. https://doi.org/10.1016/j.metabol.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  52. Qu Y, Kang MY, Dong RP, Zhao JW (2016) Correlations between abnormal glucose metabolism and bone mineral density or bone metabolism. Med Sci Monit 22:824–832. https://doi.org/10.12659/MSM.895387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Douillet C, Currier J, Saunders J, Bodnar WM, Matoušek T, Stýblo M (2013) Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicol Appl Pharmacol 267:11–15. https://doi.org/10.1016/j.taap.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  54. Cui Q, Fu J, Hu Y, Li Y, Yang B, Li L, Sun J, Chen C, Sun G, Xu Y, Zhang Q, Pi J (2017) Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic β cells to arsenite-induced cytotoxicity. Toxicol Appl Pharmacol 329:67–74. https://doi.org/10.1016/j.taap.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  55. Dover EN, Beck R, Huang MC, Douillet C, Wang Z, Klett EL, Stýblo M (2018) Arsenite and methylarsonite inhibit mitochondrial metabolism and glucose-stimulated insulin secretion in INS-1 832/13 β cells. Arch Toxicol 92:693–704. https://doi.org/10.1007/s00204-017-2074-y

    Article  CAS  PubMed  Google Scholar 

  56. Shirakawa J, Terauchi Y (2014) Selective and sequential loss of transcriptional factors: a hallmark of β-cell failure in type 2 diabetes? J Diabetes Investig 5:359–361

    Article  Google Scholar 

  57. Gibert Y, Cavarape A, Hesselson D, et al (2019) Braving the element: pancreatic β-cell dysfunction and adaptation in response to arsenic exposure. Front Endocrinol | www.frontiersin.org 1:344. https://doi.org/10.3389/fendo.2019.00344

  58. Sun Q, Yang Q, Xu H, Xue J, Chen C, Yang X, Gao X, Liu Q (2019) MiR-149 negative regulation of mafA is involved in the arsenite-induced dysfunction of insulin synthesis and secretion in pancreatic beta cells. Toxicol Sci 167:4–125. https://doi.org/10.1093/toxsci/kfy150

    Article  CAS  Google Scholar 

  59. Lee WC, Guntur AR, Long F, Rosen CJ (2017) Energy metabolism of the osteoblast: implications for osteoporosis. Endocr Rev 38:255–266

    Article  Google Scholar 

  60. Tawfik DS, Viola RE (2011) Arsenate replacing phosphate: alternative life chemistries and ion promiscuity. Biochemistry 50:1128–1134. https://doi.org/10.1021/bi200002a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dixon HBF (1996) The biochemical action of arsonic acids especially as phosphate analogues. Adv Inorg Chem 44:191–227. https://doi.org/10.1016/S0898-8838(08)60131-2

    Article  Google Scholar 

  62. Sabir S, Akash MSH, Fiayyaz F, Saleem U, Mehmood MH, Rehman K (2019) Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: inserting the association into perspectives. Biomed Pharmacother 114:108802

    Article  CAS  Google Scholar 

  63. Santra A, Maiti A, Chowdhury A, Mazumder DN (2000) Oxidative stress in liver of mice exposed to arsenic-contaminated water. Indian J Gastroenterol 19

  64. Reyes-Hinojosa D, Lozada-Pérez CA, Zamudio Cuevas Y, López-Reyes A, Martínez-Nava G, Fernández-Torres J, Olivos-Meza A, Landa-Solis C, Gutiérrez-Ruiz MC, Rojas del Castillo E, Martínez-Flores K (2019) Toxicity of cadmium in musculoskeletal diseases. Environ Toxicol Pharmacol 72:103219. https://doi.org/10.1016/j.etap.2019.103219

    Article  CAS  PubMed  Google Scholar 

  65. Rodríguez J, Mandalunis PM (2016) Effect of cadmium on bone tissue in growing animals. Exp Toxicol Pathol 68:391–397. https://doi.org/10.1016/j.etp.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  66. Almeida JA, Novelli ELB, Dal Pai Silva M, Alves Júnior R (2001) Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environ Pollut 114:169–175. https://doi.org/10.1016/S0269-7491(00)00221-9

    Article  CAS  PubMed  Google Scholar 

  67. Kraus T, Schramel P, Schaller KH et al (2001) Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds. Occup Environ Med 58:631–634. https://doi.org/10.1136/oem.58.10.631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bolt AM, Mann KK (2016) Tungsten: an emerging toxicant, alone or in combination. Curr Environ Health Rep 3:405–415. https://doi.org/10.1007/s40572-016-0106-z

    Article  CAS  PubMed  Google Scholar 

  69. EPA (2017) Technical fact sheet – tungsten. In: EPA 505-F-070- 005

  70. Bolt AM, Grant MP, Wu TH, Flores Molina M, Plourde D, Kelly ADR, Negro Silva LF, Lemaire M, Schlezinger JJ, Mwale F, Mann KK (2016) Tungsten promotes sex-specific adipogenesis in the bone by altering differentiation of bone marrow-resident mesenchymal stromal cells. Toxicol Sci 150:333–346. https://doi.org/10.1093/toxsci/kfw008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the São Paulo Research Foundation (FAPESP, no 2018/24069-3).

Author information

Authors and Affiliations

Authors

Contributions

JPBX, AZ, and FBJ designed the study. JPBX performed the analyses. JPBX, AZ, and FBJ analyzed data and wrote the manuscript. JPBX, AZ, MK, RMB, and FBJ interpreted the data and revised the manuscript. All authors approve of the final version of the manuscript.

Corresponding author

Correspondence to João Paulo B. Ximenez.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ximenez, J.P.B., Zamarioli, A., Kacena, M.A. et al. Association of Urinary and Blood Concentrations of Heavy Metals with Measures of Bone Mineral Density Loss: a Data Mining Approach with the Results from the National Health and Nutrition Examination Survey. Biol Trace Elem Res 199, 92–101 (2021). https://doi.org/10.1007/s12011-020-02150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02150-7

Keywords

Navigation