Skip to main content
Log in

Selenium Deficiency-Induced Pancreatic Pathology Is Associated with Oxidative Stress and Energy Metabolism Disequilibrium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential micronutrient that plays a crucial role in development and physiological processes. The present study aimed to investigate the effects of Se deficiency on pancreatic pathology and the potential mechanism in pigs. Twenty-four castrated male Yorkshire pigs were divided into two groups and fed a Se-deficient diet (0.007 mg Se/kg) or a Se-adequate diet (0.3 mg Se/kg) for 16 weeks. The serum concentrations of insulin and glucagon, Se concentration, histologic characteristics, apoptotic status, antioxidant activity, free radical content, and major metabolite concentrations were analyzed. The results showed that Se deficiency reduced the concentrations of insulin and glucagon in the serum and of Se in pancreas, decreased the number of islets and cells in the local islets, and induced pancreatic apoptosis. Se deficiency caused a redox imbalance, which led to an increase in the content of free radicals and decreased the activity of antioxidant enzymes. Of 147 targeted metabolites judged to be present in pancreas, only hypotaurine and D-glucuronic acid had differential concentrations with the false discovery rate < 0.05. Pathway analysis using metabolites with differential expression (unadjusted P < 0.05, fold change > 1.4 or < 0.67) found that 8 glycolytic metabolites were significantly increased by Se-deficient, whereas most of the tricarboxylic acid cycle and pentose phosphate pathway metabolites were not significantly changed. Our studies indicated that Se deficiency-induced pancreatic pathology was associated with oxidative stress and enhanced activity of glycolysis, which may provide gaining insight into the actions of Se as a diabetogenic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dalgaard TS, Briens M, Engberg RM, Lauridsen C (2018) The influence of selenium and selenoproteins on immune responses of poultry and pigs. Anim Feed Sci Technol 238:73–83. https://doi.org/10.1016/j.anifeedsci.2018.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14(7):1337–1383. https://doi.org/10.1089/ars.2010.3275

    Article  CAS  PubMed  Google Scholar 

  3. Brigelius-Flohe R, Flohe L (2017) Selenium and redox signaling. Arch Biochem Biophys 617:48–59. https://doi.org/10.1016/j.abb.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  4. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54. https://doi.org/10.1039/c3mt00185g

    Article  CAS  PubMed  Google Scholar 

  5. Yang J, Gong Y, Cai J, Liu Q, Zhang Z (2019) lnc-3215 suppression leads to calcium overload in selenium deficiency-induced chicken heart lesion via the lnc-3215-miR-1594-TNN2 pathway. Mol Ther Nucleic Acids 18:1–15. https://doi.org/10.1016/j.omtn.2019.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: revisited. IUBMB Life 68(2):97–105. https://doi.org/10.1002/iub.1466

    Article  CAS  PubMed  Google Scholar 

  7. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7(3):e33066. https://doi.org/10.1371/journal.pone.0033066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steinbrenner H, Speckmann B, Klotz LO (2016) Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys 595:113–119. https://doi.org/10.1016/j.abb.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  9. Kim HY, Gladyshev VN (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 407(3):321–329. https://doi.org/10.1042/bj20070929

    Article  CAS  PubMed  Google Scholar 

  10. Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arner ES (2003) Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci U S A 100(22):12618–12623. https://doi.org/10.1073/pnas.2134510100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hondal RJ, Marino SM, Gladyshev VN (2013) Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid Redox Signal 18(13):1675–1689. https://doi.org/10.1089/ars.2012.5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fomenko DE, Gladyshev VN (2003) Identity and functions of CxxC-derived motifs. Biochemistry 42(38):11214–11225. https://doi.org/10.1021/bi034459s

    Article  CAS  PubMed  Google Scholar 

  13. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120. https://doi.org/10.1016/j.bbagen.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  14. Varlamova EG (2018) Participation of selenoproteins localized in the ER in the processes occurring in this organelle and in the regulation of carcinogenesis-associated processes. J Trace Elem Med Biol 48:172–180. https://doi.org/10.1016/j.jtemb.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  15. Benstoem C, Goetzenich A, Kraemer S, Borosch S, Manzanares W, Hardy G, Stoppe C (2015) Selenium and its supplementation in cardiovascular disease--what do we know? Nutrients 7(5):3094–3118. https://doi.org/10.3390/nu7053094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christensen LC, Jensen NW, Vala A, Kamarauskaite J, Johansson L, Winther JR, Hofmann K, Teilum K, Ellgaard L (2012) The human selenoprotein VCP-interacting membrane protein (VIMP) is non-globular and harbors a reductase function in an intrinsically disordered region. J Biol Chem 287(31):26388–26399. https://doi.org/10.1074/jbc.M112.346775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinbrenner H (2013) Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 65:1538–1547. https://doi.org/10.1016/j.freeradbiomed.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  18. Gao XJ, Tang B, Liang HH, Yi L, Wei ZG (2019) Selenium deficiency induced an inflammatory response by the HSP60 - TLR2-MAPKs signalling pathway in the liver of carp. Fish Shellfish Immunol 87:688–694. https://doi.org/10.1016/j.fsi.2019.02.017

    Article  CAS  PubMed  Google Scholar 

  19. Zhang ZW, Zhang JL, Gao YH, Wang QH, Li S, Wang XL, Xu SW (2013) Effect of oxygen free radicals and nitric oxide on apoptosis of immune organ induced by selenium deficiency in chickens. Biometals 26(2):355–365. https://doi.org/10.1007/s10534-013-9612-8

    Article  CAS  PubMed  Google Scholar 

  20. Yao L, Du Q, Yao H, Chen X, Zhang Z, Xu S (2015) Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals 28(2):255–265. https://doi.org/10.1007/s10534-014-9819-3

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Liu Z, He X, Lian S, Liang J, Yu D, Sun D, Wu R (2018) Selenium deficiency induces duodenal villi cell apoptosis via an oxidative stress-induced mitochondrial apoptosis pathway and an inflammatory signaling-induced death receptor pathway. Metallomics 10(10):1390–1400. https://doi.org/10.1039/c8mt00142a

    Article  CAS  PubMed  Google Scholar 

  22. Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN (2011) Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal 14(12):2327–2336. https://doi.org/10.1089/ars.2010.3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, Burk RF, Dunn JR, Green AL, Hammond R, Schaffner W, Jones TF (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170(3):256–261. https://doi.org/10.1001/archinternmed.2009.495

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rayman MP (2019) Selenium intake, status, and health: a complex relationship. Hormones (Athens) 19:9–14. https://doi.org/10.1007/s42000-019-00125-5

    Article  Google Scholar 

  25. dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of selenium deficiency and toxicity worldwide: affected areas. Selenium Relat Health Issues Case Stud 11:209–230. https://doi.org/10.1007/978-3-319-56249-0_13

    Article  CAS  Google Scholar 

  26. Zhao X, Rong C, Pan F, Xiang L, Wang X, Hu Y (2018) Expression characteristics of long noncoding RNA uc.322 and its effects on pancreatic islet function. J Cell Biochem 119(11):9239–9248. https://doi.org/10.1002/jcb.27191

    Article  CAS  PubMed  Google Scholar 

  27. Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46(11):1733–1742. https://doi.org/10.2337/diab.46.11.1733

    Article  CAS  PubMed  Google Scholar 

  28. Grankvist K, Marklund SL, Taljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199(2):393–398. https://doi.org/10.1042/bj1990393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20(3):463–466. https://doi.org/10.1016/0891-5849(96)02051-5

    Article  CAS  PubMed  Google Scholar 

  30. Li JL, Sunde RA (2016) Selenoprotein transcript level and enzyme activity as biomarkers for selenium status and selenium requirements of chickens (Gallus gallus). PLoS One 11(4):e0152392. https://doi.org/10.1371/journal.pone.0152392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu J, Wang L, Tang J, Jia G, Liu G, Chen X, Cai J, Shang H, Zhao H (2017) Pancreatic atrophy caused by dietary selenium deficiency induces hypoinsulinemic hyperglycemia via global down-regulation of selenoprotein encoding genes in broilers. PLoS One 12(8):e0182079. https://doi.org/10.1371/journal.pone.0182079

    Article  PubMed  PubMed Central  Google Scholar 

  32. Asayama K, Kooy NW, Burr IM (1986) Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: decrease of islet manganosuperoxide dismutase. J Lab Clin Med 107(5):459–464

    CAS  PubMed  Google Scholar 

  33. Rani V, Deep G, Singh RK, Palle K, Yadav UC (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 148:183–193. https://doi.org/10.1016/j.lfs.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  34. Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In Vivo (Athens, Greece) 23(2):245–258. https://doi.org/10.1089/hum.2008.138

    Article  CAS  Google Scholar 

  35. Zhang K, Guo X, Zhao Q, Han Y, Zhan T, Li Y, Tang C, Zhang J (2019) Development and application of a HPLC-ICP-MS method to determine selenium speciation in muscle of pigs treated with different selenium supplements. Food Chem 302:125371. https://doi.org/10.1016/j.foodchem.2019.125371

    Article  CAS  PubMed  Google Scholar 

  36. Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E (2009) Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Environ Health Perspect 117(9):1409–1413. https://doi.org/10.1289/ehp.0900704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Che N, Ma Y, Ruan H, Xu L, Wang X, Yang X, Liu X (2018) Integrated semi-targeted metabolomics analysis reveals distinct metabolic dysregulation in pleural effusion caused by tuberculosis and malignancy. Clin Chim Acta 477:81–88. https://doi.org/10.1016/j.cca.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  38. Storey JD, Bass AJ, Dabney A, Robinson D (2019) qvalue: Q-value estimation for false discovery rate control. R package version 2.18.0. http://github.com/jdstorey/qvalue

  39. Tang C, Meng Q, Zhang K, Zhan T, Zhao Q, Zhang S, Zhang J (2017, 2017) Multi-omics analyses of red blood cell reveal antioxidation mechanisms associated with hemolytic toxicity of gossypol. Oncotarget 8(61). https://doi.org/10.18632/oncotarget.21779

  40. Chong J, Wishart DS, Xia J (2019) Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Proto Bioinformat 68(1):e86. https://doi.org/10.1002/cpbi.86

    Article  Google Scholar 

  41. Fernandes J, Hu X, Ryan Smith M, Go YM, Jones DP (2018) Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med 127:215–227. https://doi.org/10.1016/j.freeradbiomed.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hawkes WC, Alkan Z (2010) Regulation of redox signaling by selenoproteins. Biol Trace Elem Res 134(3):235–251. https://doi.org/10.1007/s12011-010-8656-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santhosh Kumar B, Priyadarsini KI (2014) Selenium nutrition: how important is it? Biomed Prev Nutr 4(2):333–341. https://doi.org/10.1016/j.bionut.2014.01.006

    Article  Google Scholar 

  44. Rayman MP, Stranges S (2013) Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med 65:1557–1564. https://doi.org/10.1016/j.freeradbiomed.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  45. Liu R, Jia T, Cui Y, Lin H, Li S (2018) The protective effect of selenium on the chicken pancreas against cadmium toxicity via alleviating oxidative stress and autophagy. Biol Trace Elem Res 184(1):240–246. https://doi.org/10.1007/s12011-017-1186-9

    Article  CAS  PubMed  Google Scholar 

  46. Zhao X, Yao H, Fan R, Zhang Z, Xu S (2014) Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biol Trace Elem Res 161(3):341–349. https://doi.org/10.1007/s12011-014-0139-9

    Article  CAS  PubMed  Google Scholar 

  47. Wang R, Sun B, Zhang Z, Li S, Xu S (2011) Dietary selenium influences pancreatic tissue levels of selenoprotein W in chickens. J Inorg Biochem 105(9):1156–1160. https://doi.org/10.1016/j.jinorgbio.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  48. Wu Q, Huang K, Xu H (2003) Effects of long-term selenium deficiency on glutathione peroxidase and thioredoxin reductase activities and expressions in rat aorta. J Inorg Biochem 94(4):301–306. https://doi.org/10.1016/s0162-0134(03)00058-8

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi K, Newburger PE, Cohen HJ (1986) Glutathione peroxidase protein. Absence in selenium deficiency states and correlation with enzymatic activity. J Clin Invest 77(4):1402–1404. https://doi.org/10.1172/jci112449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ji LL, Stratman FW, Lardy HA (1988) Antioxidant enzyme systems in rat liver and skeletal muscle. Influences of selenium deficiency, chronic training, and acute exercise. Arch Biochem Biophys 263(1):150–160. https://doi.org/10.1016/0003-9861(88)90623-6

    Article  CAS  PubMed  Google Scholar 

  51. Xu J, Gong Y, Sun Y, Cai J, Liu Q, Bao J, Yang J, Zhang Z (2019) Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res 194:237–243. https://doi.org/10.1007/s12011-019-01775-7

    Article  CAS  PubMed  Google Scholar 

  52. Zheng S, Zhao J, Xing H, Xu S (2019) Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J Cell Physiol. https://doi.org/10.1002/jcp.28298

  53. Avanzo JL, Xavier de Mendonca Junior C, de Cerqueira Cesar M (2002) Role of antioxidant systems in induced nutritional pancreatic atrophy in chicken. Comp Biochem Physiol B Biochem Mol Biol 131(4):815–823. https://doi.org/10.1016/s1096-4959(02)00040-4

    Article  PubMed  Google Scholar 

  54. Tan BL, Norhaizan ME, Liew WP (2018) Nutrients and oxidative stress: friend or foe? Oxidative Med Cell Longev 2018:9719584. https://doi.org/10.1155/2018/9719584

    Article  CAS  Google Scholar 

  55. Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I (2014) Antioxidants and human diseases. Clin Chim Acta 436:332–347. https://doi.org/10.1016/j.cca.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  56. Yang J, Zhang Y, Hamid S, Cai J, Liu Q, Li H, Zhao R, Wang H, Xu S, Zhang Z (2017) Interplay between autophagy and apoptosis in selenium deficient cardiomyocytes in chicken. J Inorg Biochem 170:17–25. https://doi.org/10.1016/j.jinorgbio.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  57. Quijano C, Trujillo M, Castro L, Trostchansky A (2016) Interplay between oxidant species and energy metabolism. Redox Biol 8:28–42. https://doi.org/10.1016/j.redox.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  58. Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, Zamboni N (2015) Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell 59(3):359–371. https://doi.org/10.1016/j.molcel.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  59. Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6(4):10. https://doi.org/10.1186/jbiol61

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sun S, Guo Z, Fu H, Zhu J, Ge X (2018) Integrated metabolomic and transcriptomic analysis of brain energy metabolism in the male oriental river prawn (Macrobrachium nipponense) in response to hypoxia and reoxygenation. Environ Pollut 243(Pt B):1154–1165. https://doi.org/10.1016/j.envpol.2018.09.072

    Article  CAS  PubMed  Google Scholar 

  61. Martinez-Reyes I, Cuezva JM (2014) The H(+)-ATP synthase: a gate to ROS-mediated cell death or cell survival. Biochim Biophys Acta 1837(7):1099–1112. https://doi.org/10.1016/j.bbabio.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  62. Zeng L, Ai CX, Zheng JL, Zhang JS, Li WC (2019) Cu pre-exposure alters antioxidant defense and energy metabolism in large yellow croaker Larimichthys crocea in response to severe hypoxia. Sci Total Environ 687:702–711. https://doi.org/10.1016/j.scitotenv.2019.06.047

    Article  CAS  PubMed  Google Scholar 

  63. Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi MH, Mansouri K (2019) Cancer cells change their glucose metabolism to overcome increased ROS: one step from cancer cell to cancer stem cell? Biomed Pharmacother 112:108690. https://doi.org/10.1016/j.biopha.2019.108690

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31802073), National Key Research and Development Program of China (2018YFD050040001-02/03), The Special Basic Research Fund for Central Public Research Institutes (2018-YWF-YB-5), Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Laboratory of Se-enriched Food Development, and the Agricultural Science and Technology Innovation Program (ASTIP-IAS12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohua Tang.

Ethics declarations

All procedures in this study were approved by the Animal Care and Use Committee of the Institute of Animal Science, Chinese Academy of Agricultural Sciences.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(XLSX 76.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhao, Q., Zhang, K. et al. Selenium Deficiency-Induced Pancreatic Pathology Is Associated with Oxidative Stress and Energy Metabolism Disequilibrium. Biol Trace Elem Res 199, 154–165 (2021). https://doi.org/10.1007/s12011-020-02140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02140-9

Keywords

Navigation