Skip to main content
Log in

Selenomethionine Improves Antioxidant Capacity of Breast Muscle in Geese Via Stimulating Glutathione System and Thiol Pool

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The antioxidant capacity of breast muscle in geese fed diets with sodium selenite (SS) or selenomethionine (SeMet) were investigated in the present study. Two hundred healthy 28-day-old male geese were randomly allotted into four groups (one inorganic group and three organic groups) with five replicates per group. Geese in the four groups were fed the basal diet with 0.3 mg selenium (Se)/kg SS, and the basal diet with 0.2, 0.3 and 0.4 mg Se/kg SeMet, respectively. The experiment lasted for 42 days. Diets with SS or SeMet had no significant effect on growth performance of geese. Geese fed diets with SeMet had higher Se content of breast muscle than SS (P < 0.001). Compared to SS, SeMet increased scavenging abilities of 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt free radical, hydroxyl radical and superoxide radical, the concentrations of reduced glutathione (GSH), total thiol and non-protein thiol, as well as the activity of glutathione peroxidase in breast muscle of geese (P < 0.05). Moreover, dietary SeMet reduced the concentrations of reactive oxygen metabolites, malondialdehyde and protein carbonyl in breast muscle of geese compared to SS (P < 0.05). Therefore, SeMet improved the antioxidant capacity of breast muscle in geese, which might be related to the stimulated GSH-system and thiol pool. The recommended inclusion level of SeMet in goose diet is 0.2 mg Se/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tiwary AK, Stegelmeier BL, Panter KE, James LF, Hall JO (2006) Comparative toxicosis of sodium selenite and selenomethionine in lambs. J Vet Diagn Investig 18:61–70. https://doi.org/10.1177/104063870601800108

    Article  Google Scholar 

  2. Briens M, Mercier Y, Rouffineau F, Vacchina V, Geraert PA (2013) Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. Br J Nutr 110:617–624. https://doi.org/10.1017/S0007114512005545

    Article  CAS  PubMed  Google Scholar 

  3. Davis TZ, Tiwary AK, Stegelmeier BL, Pfister JA, Panter KE, Hall JO (2017) Comparative oral dose toxicokinetics of sodium selenite and selenomethionine. J Appl Toxicol 37:231–238. https://doi.org/10.1002/jat.3350

    Article  CAS  PubMed  Google Scholar 

  4. Chantiratikul A, Chinrasri O, Chantiratikul P (2018) Effect of selenium from selenium-enriched kale sprout versus other selenium sources on productivity and selenium concentrations in egg and tissue of laying hens. Biol Trace Elem Res 182:105–110. https://doi.org/10.1007/s12011-017-1069-0

    Article  CAS  PubMed  Google Scholar 

  5. Tufarelli V, Ceci E, Laudadio V (2016) 2-hydroxy-4-methylselenobutanoic acid as new organic selenium dietary supplement to produce selenium-enriched eggs. Biol Trace Elem Res 171:453–458. https://doi.org/10.1007/s12011-015-0548-4

    Article  CAS  PubMed  Google Scholar 

  6. Zhan XA, Wang M, Zhao RQ, Li WF, Xu ZR (2007) Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Anim Feed Sci Tech 132:202–211. https://doi.org/10.1016/j.anifeedsci.2006.03.020

    Article  CAS  Google Scholar 

  7. Cao J, Guo F, Zhang L, Dong B, Gong L (2014) Effects of dietary Selenomethionine supplementation on growth performance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs. J Anim Sci Biotechnol 5:46–52. https://doi.org/10.1186/2049-1891-5-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jing CL, Dong XF, Wang ZM, Liu S, Tong JM (2015) Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens. Poult Sci 94:965–975 https://doi.org/10.3382/ps/pev045

    Article  CAS  Google Scholar 

  9. Rayman MP (2004) The use of high-selenium yeast toraise selenium status: how does it measure up? Br J Nutr 92:557–573. https://doi.org/10.1079/BJN20041251

    Article  CAS  PubMed  Google Scholar 

  10. Baowei W, Guoqing H, Qiaoli W, Bin Y (2011) Effects of yeast selenium supplementation on the growth performance, meat quality, immunity, and antioxidant capacity of goose. J Anim Physiol Anim Nutr (Berl) 95:440–448. https://doi.org/10.1111/j.1439-0396.2010.01070.x

    Article  CAS  Google Scholar 

  11. Ahmad H, Tian J, Wang J, Khan MA, Wang Y, Zhang L, Wang T (2012) Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. J Agric Food Chem 60:7111–7120 https://doi.org/10.1021/jf3017207

    Article  CAS  Google Scholar 

  12. Schrauzer GN (2003) The nutritional significance, metabolism, and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112. https://doi.org/10.1016/S1043-4526(03)47002-2

    Article  CAS  PubMed  Google Scholar 

  13. Grintzalis K, Papapostolou I, Zisimopoulos D, Stamatiou I, Georgiou CD (2014) Multiparametric protocol for the determination of thiol redox state in living matter. Free Radic Biol Med 74:85–98. https://doi.org/10.1016/j.freeradbiomed.2014.06.024

    Article  CAS  PubMed  Google Scholar 

  14. Song YX, Hou JX, Zhang L, Wang JG, Liu XR, Zhou ZQ, Cao BY (2015) Effect of dietary selenomethionine supplementation on growth performance, tissue se concentration, and blood glutathione peroxidase activity in kid Boer goats. Biol Trace Elem Res 167:242–250. https://doi.org/10.1007/s12011-015-0316-5

    Article  CAS  PubMed  Google Scholar 

  15. Wan XL, Ju GY, Xu L, Yang HM, Wang ZY (2019) Dietary selenomethionine increases antioxidant capacity of geese by improving glutathione and thioredoxin systems. Poult Sci 98:3763–3769 https://doi.org/10.3382/ps/pez066

    Article  CAS  Google Scholar 

  16. Wang ZY, Yang HM, Lu J, Li WZ, Zou JM (2014) Influence of whole hulled rice and rice husk feeding on the performance, carcass yield and digestive tract development of geese. Anim Feed Sci Technol 194:99–105 https://doi.org/10.1016/j.anifeedsci.2014.04.009

    Article  Google Scholar 

  17. Yin LY, Wang ZY, Yang HM, Xu L, Zhang J, Xing H (2017) Effects of stocking density on growth performance, feather growth, intestinal development, and serum parameters of geese. Poult Sci 96:3163–3168 https://doi.org/10.3382/ps/pex136

    Article  CAS  Google Scholar 

  18. NRC (1994) Nutrient requirements of poultry, 9th revised ed. National Academy Press, Washington, DC, USA

    Google Scholar 

  19. Bainor A, Chang L, McQuade TJ, Webb B, Gestwicki JE (2011) Bicinchoninic acid (BCA) assay in low volume. Anal Biochem 410:310–312. https://doi.org/10.1016/j.ab.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  20. Wan X, Ahmad H, Zhang L, Wang Z, Wang T (2018) Dietary enzymatically treated Artemisia annua L. improves meat quality, antioxidant capacity and energy status of breast muscle in heat-stressed broilers. J Sci Food Agric 98:3715–3721. https://doi.org/10.1002/jsfa.8879

    Article  CAS  PubMed  Google Scholar 

  21. Costantini D, Dell’Omo G (2006) Effects of T-cell-mediated immune response on avian oxidative stress. Comp Biochem Physiol A Mol Integr Physiol 145:137–142. https://doi.org/10.1016/j.cbpa.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  22. Gaona-Gaona L, Molina-Jijón E, Tapia E, Zazueta C, Hernández-Pando R, Calderón-Oliver M, Zarco-Márquez G, Pinzón E, Pedraza-Chaverri J (2011) Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats. Toxicology 286:20–27. https://doi.org/10.1016/j.tox.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  23. IBM SPSS Inc (2013) SPSS Base 22.0 for Windows User's Guide. Chicago, IL. USA

  24. Oliveira TFB, Rivera DFR, Mesquita FR, Braga H, Ramos EM, Bertechini AG (2014) Effect of different sources and levels of selenium on performance, meat quality, and tissue characteristics of broilers. J Appl Poult Res 23:15–22 https://doi.org/10.3382/japr.2013-00761

    Article  CAS  Google Scholar 

  25. Juniper DT, Bertin G (2013) Effects of dietary selenium supplementation on tissue selenium distribution and glutathione peroxidase activity in Chinese ring necked pheasants. Animal 7:562–570. https://doi.org/10.1017/S175173111200211X

    Article  CAS  PubMed  Google Scholar 

  26. Payne RL, Southern LL (2005) Comparison of inorganic and organic selenium sources for broilers. Poult Sci 84:898–902. https://doi.org/10.1093/ps/84.6.898

    Article  CAS  PubMed  Google Scholar 

  27. Liu G, Zhao Y, Cao S, Wang R, Zhang L, Lu L, Liao X, Luo X (2019) Relative bioavailability of selenium yeast for broilers fed a conventional corn-soybean meal diet. J Anim Physiol Anim Nutr (Berl). https://doi.org/10.1111/jpn.13262

  28. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727. https://doi.org/10.1074/jbc.R800045200

    Article  CAS  PubMed  Google Scholar 

  29. Hawkes WC, Alkan Z (2010) Regulation of redox signaling by selenoproteins. Biol Trace Elem Res 134:235–251. https://doi.org/10.1007/s12011-010-8656-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piantadosi CA, Suliman HB (2012) Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 53:2043–2053. https://doi.org/10.1016/j.freeradbiomed.2012.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahmoud KZ, Edens FW (2003) Influence of selenium sources on age-related and mild heat stress-related changes of blood and liver glutathione redox cycle in broiler chickens (Gallus domesticus). Comp Biochem Physiol B Biochem Mol Biol 136:921–934. https://doi.org/10.1016/S1096-4959(03)00288-4

    Article  CAS  PubMed  Google Scholar 

  32. Juniper DT, Phipps RH, Ramos-Morales E, Bertin G (2008) Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. J Anim Sci 86:3100–3109. https://doi.org/10.2527/jas.2007-0595

    Article  CAS  PubMed  Google Scholar 

  33. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic biol med 26:1231-1237. Org/https://doi.org/10.1016/S0891-5849(98)00315-3

  34. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang Z, Lin Y, Zhou G, Luo L, Jiang S, Chen F (2009) Effects of dietary selenomethionine supplementation on growth performance, meat quality and antioxidant property in yellow broilers. J Agric Food Chem 57:9769–9772. https://doi.org/10.1021/jf902411c

    Article  CAS  PubMed  Google Scholar 

  36. Zhan X, Wang M, Li X, Zhao R (2011) Selenomethionine: an effective selenium source for sow to improve se distribution, antioxidant status, and growth performance of pig offspring. Biol Trace Elem Res 142:481–491. https://doi.org/10.1007/s12011-010-8817-8

    Article  CAS  PubMed  Google Scholar 

  37. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485. https://doi.org/10.1016/j.bbagen.2009.02.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project of the China Agriculture Research System (CARS-42-11) of the People’s Republic of China and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The technical assistance of our labmates are gratefully acknowledged.

Funding

This study was funded by the Project of the China Agriculture Research System (CARS-42-11) of the People’s Republic of China and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyue Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

“All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.”

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Ju, G., Xu, L. et al. Selenomethionine Improves Antioxidant Capacity of Breast Muscle in Geese Via Stimulating Glutathione System and Thiol Pool. Biol Trace Elem Res 198, 253–259 (2020). https://doi.org/10.1007/s12011-020-02052-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02052-8

Keywords

Navigation