Skip to main content
Log in

Effect of Zn Supplementation on Trace Element Status in Rats with Diet-Induced Non-alcoholic Fatty Liver Disease

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study aimed to assess the effect of Zn supplementation on trace element levels in the liver, serum, and hair of rats with dietary-induced non-alcoholic fatty liver disease (NAFLD). A total of 26 3-month-old female Wistar rats were divided into four groups: control, NAFLD, Zn-supplemented (227 mg/L zinc as Zn sulfate Zn(SO)4 dissolved in a drinking water), and NAFLD-Zn-supplemented. NAFLD was verified by histological assessment of liver samples. The serum was examined for routine biochemical parameters. Trace elements content was assessed using inductively coupled plasma mass spectrometry (ICP-MS). Zn treatment resulted in an improvement in liver weight and morphology. Dietary supplementation with Zn prevented NAFLD-induced decrease liver Co. The tendency to increase liver Fe in the Zn-treated group was observed. Zn treatment decreased hepatic Al and serum V levels. However, Zn administration did not affect NAFLD-induced I, Mn, and Se depletion in the liver. Hair Zn levels raised in Zn-supplemented groups. Conclusively, the results of the study indicate that Zn supplementation could have a beneficial effect in modulation of the altered trace element status and liver morphology.

Highlights

•Zn treatment improved liver weight and morphology in rats with NAFLD.

•Zn supplementation decreased liver Al in NAFLD.

•Treatment by Zn prevented depletion of liver Co.

•Zn decreased serum V and increased hair Zn levels.

•No effect of Zn on NAFLD-induced hepatic I, Mn and Se depletion was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Polimeni L, Del Ben M, Baratta F, Perri L, Albanese F, Pastori D, Violi F, Angelico F (2015) Oxidative stress: new insights on the association of non-alcoholic fatty liver disease and atherosclerosis. World J Hepatol 7(10):1325–1336

    PubMed  PubMed Central  Google Scholar 

  2. Aigner E, Weiss G, Datz C (2015) Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J Hepatol 7:177–188. https://doi.org/10.4254/wjh.v7.i2.177

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gatiatulina ER, Popova EV, Polyakova VS, Skalnaya AA, Agletdinov EF, Nikonorov AA, Skalny AV, Tinkov AA (2017) Evaluation of tissue metal and trace element content in a rat model of non-alcoholic fatty liver disease using ICP-DRC-MS. J Trace Elem Med Biol 39:91–99. https://doi.org/10.1016/j.jtemb.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  4. DeFilippis AP, Blaha MJ, Martin SS, Reed RM, Jones SR, Nasir K, Blumenthal RS, Budoff MJ (2013) Nonalcoholic fatty liver disease and serum lipoproteins: the multi-ethnic study of atherosclerosis. Atherosclerosis 227(2):429–436

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Birkenfeld AL, Shulman GI (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 59(2):713–723

    PubMed  PubMed Central  Google Scholar 

  6. Stefan N, Häring HU, Cusi K (2019) Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. The Lancet Diabetes & Endocrinology 7(4):313–324

    Google Scholar 

  7. Anstee QM, Seth D, Day CP (2016) Genetic factors that affect risk of alcoholic and nonalcoholic fatty liver disease. Gastroenterology 150:1728–1744

    PubMed  Google Scholar 

  8. Schattenberg, J. M., & Bergheim, I. (2019). Nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD)

    Google Scholar 

  9. Prasad AS (2013) Essential and toxic element: trace elements in human health and disease. Elsevier

  10. Varga I, Szebeni A, Szoboszlai N, Kovács B (2005) Determination of trace elements in human liver biopsy samples by ICP-MS and TXRF: hepatic steatosis and nickel accumulation. Anal Bioanal Chem 383:476–482. https://doi.org/10.1007/s00216-005-0010-0

    Article  CAS  PubMed  Google Scholar 

  11. Yang Z, Yan C, Liu G, Niu Y, Zhang W, Lu S, Li X, Zhang H, Ning G, Fan J, Qin L, Su Q (2016) Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis. Sci Rep 6:37288. https://doi.org/10.1038/srep37288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chung J, Kim MS, Han SN (2010) Diet-induced obesity leads to decreased hepatic iron storage associated with inflammation. Nutr Res 31(12):915–921

    Google Scholar 

  13. Sonnweber T, Ress C, Nairz M et al (2012) High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem 23(12):1600–1608

    CAS  PubMed  Google Scholar 

  14. Hyder O, Chung M, Cosgrove D, Herman JM, Li Z, Firoozmand A, Gurakar A, Koteish A, Pawlik TM (2013) Cadmium exposure and liver disease among US adults. J Gastrointest Surg 17:1265–1273

    PubMed  PubMed Central  Google Scholar 

  15. Tinkov AA, Gatiatulina ER, Popova EV, Polyakova VS, Skalnaya AA, Agletdinov EF, Nikonorov AA, Skalny AV. Early high-fat feeding induces alteration of trace element content in tissues of juvenile male Wistar rats (2017) Biol. Trace Elem Res 175(2): 367–374

  16. Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med 8(3):281–291

    CAS  PubMed  Google Scholar 

  17. Maret W (2013a) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr An Int Rev J 4:82–91. https://doi.org/10.3945/an.112.003038

    Article  CAS  Google Scholar 

  18. Maret W (2013b) Zinc and human disease. In: Interrelations between essential metal ions and human diseases, Springer, Netherlands, pp 389–414

  19. Zhou Z, Wang L, Song Z, Saari JT, McClain CJ, Kang YJ (2005) Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. Am J Pathol 166(6):1681–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Karamali M, Heidarzadeh Z, Seifati SM, Samimi M, Tabassi Z, Hajijafari M, Asemi Z, Esmaillzadeh A (2015) Zinc supplementation and the effects on metabolic status in gestational diabetes: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicat 29(8):1314–1319

    PubMed  Google Scholar 

  21. Chen MD, Liou SJ, Lin PY, Yang VC, Alexander PS, Lin WH (1998) Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice. Biol Trace Elem Res 61(3):303–311

    CAS  PubMed  Google Scholar 

  22. Mousavi SN, Faghihi A, Motaghinejad M, Shiasi M, Imanparast F, Amiri HL, Shidfar F (2017) Zinc and selenium co-supplementation reduces some lipid peroxidation and angiogenesis markers in a rat model of NAFLD-fed high fat diet. Biol Trace Elem Res:1–8

  23. Kumar A, Malhotra A, Nair P, Garg ML, Dhawan DK (2010) Protective role of zinc in ameliorating arsenic-induced oxidative stress and histological changes in rat liver. J Environ Pathol Toxicol Oncol 29(2)

  24. Goel A, Dhawan DK (2001) Zinc supplementation prevents liver injury in chlorpyrifos-treated rats. Biol Trace Elem Res 82(1–3):185–200

    CAS  PubMed  Google Scholar 

  25. Kang X, Zhong W, Liu J, Song Z, McClain CJ, Kang YJ, Zhou Z (2009) Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4α and peroxisome proliferator-activated receptor-α. Hepatology. 50:1241–1250. https://doi.org/10.1002/hep.23090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capdor J, Foster M, Petocz P, Samman S (2013) Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol 27(2):137–142

    CAS  PubMed  Google Scholar 

  27. Li YV (2014) Zinc and insulin in pancreatic beta-cells. Endocrine. 45(2):178–189

    CAS  PubMed  Google Scholar 

  28. Chu A, Foster M, Ward S, Zaman K, Hancock D, Petocz P, Samman S (2016) Zinc-induced upregulation of metallothionein (MT)-2A is predicted by gene expression of zinc transporters in healthy adults. FASEB J 30(1):148–141

    Google Scholar 

  29. Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-jB signaling. Inflammopharmacology 25(1):11–24

    PubMed  PubMed Central  Google Scholar 

  30. von Bülow V, Dubben S, Engelhardt G, Hebel S, Plümäkers B, Heine H, Rink L, Haase H (2007) Zinc-dependent suppression of TNF-α production is mediated by protein kinase A-induced inhibition of Raf-1, IκB kinase β, and NF-κB. J Immunol 179(6):4180–4186

    Google Scholar 

  31. Prasad AS (2014) Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr 1:14. https://doi.org/10.3389/fnut.2014.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He X, Kan H, Cai L, Ma Q (2009) Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol 46(1):47–58

    CAS  PubMed  Google Scholar 

  33. Li B, Cui W, Tan Y, Luo P, Chen Q, Zhang C, Qu W, Miao L, Cai L (2014) Zinc is essential for the transcription function of Nrf2 in human renal tubule cells in vitro and mouse kidney in vivo under the diabetic condition. J Cell Mol Med 18(5):895–906

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Taylor CG (2005) Zinc, the pancreas, and diabetes: insights from rodent studies and future directions. Biometals 18(4):305–312

    CAS  PubMed  Google Scholar 

  35. King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130(5):1360S–1366S

    CAS  PubMed  Google Scholar 

  36. Sidhu P, Garg ML, Morgenstern P, Vogt J, Butz T, Dhawan DK (2004) Role of zinc in regulating the levels of hepatic elements following nickel toxicity in rats. Biol Trace Elem Res 102(1–3):161–172

    CAS  PubMed  Google Scholar 

  37. Sidhu P, Garg ML, Dhawan DK (2004) Protective effects of zinc on oxidative stress enzymes in liver of protein deficient rats. Nutr Hosp 19(6):341–347

    CAS  PubMed  Google Scholar 

  38. Anttinen H, Ryhänen L, Puistola U, Arranto A, Oikarinen A (1984) Decrease in liver collagen accumulation in carbon tetrachloride-injured and normal growing rats upon administration of zinc. Gastroenterology 86(3):532–539

    CAS  PubMed  Google Scholar 

  39. Skalny AA, Medvedeva YS, Alchinova IB, Gatiatulina ER, Radysh IV, Karganov MY, Skalny AV, Nikonorov AA, Tinkov AA (2017) Zinc supplementation modifies trace element status in exercised rats. J Appl Biomed 15(1):39–47

    Google Scholar 

  40. Chung J, Kim MS, Han SN (2011) Diet-induced obesity leads to decreased hepatic iron storage in mice. Nutr Res 31:915–921

    CAS  PubMed  Google Scholar 

  41. Chung J, Kim MS, Han SN (2010) Diet-induced obesity leads to decreased hepatic iron storage associated with inflammation. FASEB J 24:341–344

    Google Scholar 

  42. Samman S, Roberts DC (1988) The effect of zinc supplements on lipoproteins and copper status. Atherosclerosis 70(3):247–252

    CAS  PubMed  Google Scholar 

  43. Burch RE, Williams RV, Hahn HK, Jetton MM, Sullivan JF (1975) Tissue trace element and enzyme content in pigs fed a low manganese diet. I. A relationship between manganese and selenium. Lab Clin Med 86:132–139

    CAS  Google Scholar 

  44. Mercadante CJ, Herrera C, Pettiglio MA, Foster ML, Johnson LC, Dorman DC, Bartnikas TB (2016) The effect of high dose oral manganese exposure on copper, iron and zinc levels in rats. Biometals 29(3):417–422

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaloglu N, Yildirim G, Bastug M, Koc E, Ficicilar H, Sayal A (2002) High dosage of manganese chloride application and iron zinc copper status in rats. Trace Elem Electroly 19:138–142

    CAS  Google Scholar 

  46. Hunt CD (2012) Dietary boron: progress in establishing essential roles in human physiology. J Trace Elem Med Biol 26(2):157–160

    CAS  PubMed  Google Scholar 

  47. Bakken NA, Hunt CD (2003) Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status. J Nutr 133(11):3577–3583

    CAS  PubMed  Google Scholar 

  48. Ameen HNM, Hussain SA, Ahmed ZA (2015) Anti-inflammatory effects of boron alone or as adjuvant with dexamethasone in animal models of chronic and granulomatous inflammation. Int J Basic Clin Pharmacol 4(4):701–707

    Google Scholar 

  49. Yamaguchi M, Oishi H, Suketa Y (1989) Effect of vanadium on bone metabolism in weanling rats: zinc prevents the toxic effect of vanadium. Res Exp Med 189(1):47–53

    CAS  Google Scholar 

  50. Zwolak I, Zaporowska H (2009) Preliminary studies on the effect of zinc and selenium on vanadium-induced cytotoxicity in vitro. Acta Biol Hung 60(1):55–67

    PubMed  Google Scholar 

  51. Hathcock JN, Hill CH, Matrone G (1964) Vanadium toxicity and distribution in chicks and rats. J Nutr 82(1):106–110

    CAS  PubMed  Google Scholar 

  52. Skalny AA, Tinkov AA, Medvedeva YS, Alchinova IB, Karganov MY, Ajsuvakova OP, Skalny AV, Nikonorov AA (2015) Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs. Interdiscip Toxicol 8(3):131–138

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Singla N, Dhawan DK (2013) Zinc, a neuroprotective agent against aluminum-induced oxidative DNA injury. Mol Neurobiol 48(1):1–12

    CAS  PubMed  Google Scholar 

  54. Bhasin P, Singla N, Dhawan DK (2014) Protective role of zinc during aluminum-induced hepatotoxicity. Environ Toxicol 29(3):320–327

    CAS  PubMed  Google Scholar 

  55. Canet MJ, Hardwick RN, Lake AD, Kopplin M, Scheffer GL, Klimecki WT, Gandolfi AJ, Cherrington N (2012) Altered arsenic disposition in experimental nonalcoholic fatty liver disease. Drug Metab Dispos 40(9):1817–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ganger R, Garla R, Mohanty BP, Bansal MP, Garg ML (2016) Protective effects of zinc against acute arsenic toxicity by regulating antioxidant defense system and cumulative metallothionein expression. Biol Trace Elem Res 169(2):218–229

    CAS  PubMed  Google Scholar 

  57. Kordas K, Roy A, López P, García-Vargas G, Cebrián ME, Vera-Aguilar E, Rosado JL (2017) Iron and zinc supplementation does not impact urinary arsenic excretion in Mexican school children. J Pediatr 185:205–210

    CAS  PubMed  Google Scholar 

  58. López-Carrillo L, Gamboa-Loira B, Becerra W, Hernández-Alcaraz C, Hernández-Ramírez RU, Gandolfi AJ, Franco-Marina F, Cebrián ME (2016) Dietary micronutrient intake and its relationship with arsenic metabolism in Mexican women. Environ Res 151:445–450

    PubMed  PubMed Central  Google Scholar 

  59. Solomons NW, Pineda O (1983) Studies on the bioavailability of zinc in humans: mechanism of the intestinal interaction. J Nutr 113:337–349

    CAS  PubMed  Google Scholar 

  60. Sandström B (2001) Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr 85(S2):S181–S185

    PubMed  Google Scholar 

  61. Sakurai H, Adachi Y (2005) The pharmacology of the insulinomimetic effect of zinc complexes. Biometals 18(4):319–323

    CAS  PubMed  Google Scholar 

  62. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2017) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci:1–13

Download references

Acknowledgments

The authors would like to thank Daria R. Soliannikova, Associate Professor at the Department of Histology, Embryology and Cytology of South Ural State Medical University for help in results’ analysis of histological examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia R. Gatiatulina.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatiatulina, E.R., Sheina, E.A., Nemereshina, O.N. et al. Effect of Zn Supplementation on Trace Element Status in Rats with Diet-Induced Non-alcoholic Fatty Liver Disease. Biol Trace Elem Res 197, 202–212 (2020). https://doi.org/10.1007/s12011-019-01985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01985-z

Keywords

Navigation