Skip to main content

Advertisement

Log in

Differential Bioaccumulation of Trace Elements and Rare Earth Elements in the Muscle, Kidneys, and Liver of the Invasive Indo-Pacific Lionfish (Pterois spp.) from Cuba

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The Indo-Pacific lionfish is a saltwater fish that inhabits the Red Sea waters and the Indian and Pacific oceans; it is an invasive species in the western Atlantic and was recently introduced into the local diet in the USA, Central and South America, and the Caribbean with the aim of controlling the invasion of this species. Due to its predatory nature, it tends to bioaccumulate metals and other contaminants via the marine food web and could thus constitute a suitable species for monitoring aquatic ecosystems. The presence and distribution of 23 trace elements and 16 rare earth elements (REEs) were investigated by inductively coupled plasma-mass spectrometry (ICP-MS) in the muscle, liver, and kidneys of lionfish from Cuba. Significant differences in metal concentrations were found in the different fish organs. The liver and kidneys registered the highest concentrations for most trace elements and for ΣREE, thus demonstrating that they are effective bioindicators of possible pollution on the environment in which fish live, and assuming great importance in the choice of early biomonitoring. Trace element concentrations in the muscle are instead of crucial interest for consumer safety. The limits set by EU regulations and Cuban guidelines for Cd and Pb in fish muscle were never exceeded, suggesting that lionfish from Cuba could therefore represent a good source of minerals and proteins for the local population.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huth WL, McEvoy DM, Morgan OA (2018) Controlling an invasive species through consumption: the case of lionfish as an impure public good. Ecol Econ 149:74–79

    Article  Google Scholar 

  2. ANSA 2017. http://www.ansa.it/english/news/2017/03/27/first-scorpion-fish-spotted-off-italy_c8ab431f-056b-4b0d-901e-9d91bfe0fbed.html

  3. Stevens JL, Jackson RL, Olson JB (2016) Bacteria associated with lionfish (Pterois volitans/miles complex) exhibit antibacterial activity against known fish pathogens. Mar Ecol Prog Ser 558:167–180

    Article  CAS  Google Scholar 

  4. Albins MA, Hixon MA (2013) Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ Biol Fish 96:1151–1157

    Article  Google Scholar 

  5. Hoo Fung L, Antoine JMR, Grant CN, Buddo DSA (2013) Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758). Food Chem Toxicol 60:205–212

    Article  PubMed  CAS  Google Scholar 

  6. Authman MMN, Zaki MS, Khallaf EA, Abbas HH (2015) Use of fish as bio-indicator of the effects of heavy metals pollution. Aquac Res Development 6(4):1–13

    Google Scholar 

  7. Hazrat A, Ezzat K, Ikram I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019(6730305):14. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  8. Squadrone S, Prearo M, Brizio P, Gavinelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC (2013) Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 90:358–365

    Article  CAS  PubMed  Google Scholar 

  9. Franceschini PL, La Marca F, Recine G (2017) Terre rare, il futuro passa dal recupero. ECOSCIENZA 2:46–47

    Google Scholar 

  10. Ritger AL, Curtis AN, Chen CY (2018) Bioaccumulation of mercury and other metal contaminants in invasive lionfish (Pterois volitans/miles) from Curaçao. Mar Pollut Bull 131:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huge DH, Schofield PJ, Jacoby CA, Frazer TK (2014) Total mercury concentrations in lionfish (Pterois volitans/miles) from the Florida Keys National Marine Sanctuary, USA. Mar Pollut Bull 78(1):51–55

    Article  CAS  PubMed  Google Scholar 

  12. Tremain DM, O’Donnell KE (2014) Total mercury levels in invasive lionfish, Pterois volitans and Pterois miles (Scorpaenidae), from Florida waters. Bull Mar Sci 90(2):000–000

    Article  Google Scholar 

  13. Squadrone S, Brizio P, Stella C, Prearo M, Pastorino P, Serracca L, Ercolini C, Abete MC (2016) Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy). Environ Pollut 215:77–83

    Article  CAS  PubMed  Google Scholar 

  14. Squadrone S, Brizio P, Battuello M, Nurra N, Mussat Sartor R, Benedetto A, Pessani D, Abete MC (2017) A first report of rare earth elements in northwestern Mediterranean seaweeds. Mar Pollut Bull 122:236–242

    Article  CAS  PubMed  Google Scholar 

  15. Mohammed A et al (2012) Metals in sediments and fish from Sea Lots and Point Lisas Harbors, Trinidad and Tobago. Mar Pollut Bull 64:169–173

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez-Sierra CJ, Jiménez B (2002) Trace metals in striped mojarra fish (Diapterus plumieri) from Puerto Rico. Mar Pollut Bull 44:1039–1045

    Article  CAS  PubMed  Google Scholar 

  17. Mansilla-Rivera I, Rodríguez-Sierra CJ (2011) Metal levels in fish captured in Puerto Rico and estimation of risk from fish consumption. Arch Environ Contam Toxicol 60:132

    Article  CAS  PubMed  Google Scholar 

  18. Burgos-Nunez S, Navarro-Frometa A, Marrugo-Negrete J, Enamorado-Montes G, Urango-Cardenas I (2017) Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: a marine tropical ecosystem. Mar Pollut Bull 120:379–386

    Article  CAS  PubMed  Google Scholar 

  19. Fuentes-Gandara F, Pinedo-Hernández J, Marrugo-Negrete J et al (2018) Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean. SeaEnviron Geochem Health 40:229

    Article  CAS  Google Scholar 

  20. Peña-Icart M, Rodrigues Pereira-Filho E, Lopes Fialho L, Nóbrega JA, Alonso-Hernández C, Bolaños-Alvarez Y, Muñoz-Caravaca A, Pomares-Alfonso MS (2017) Study of macro and microelements in fish from the Cienfuegos Bay. Relationship with its content in sediments. Environ Monit Assess 189:427

    Article  PubMed  CAS  Google Scholar 

  21. Wei H, Zhang J, Zhang D, Tu T, Luo L (2014) Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol Environ Saf 104:182–188

    Article  CAS  PubMed  Google Scholar 

  22. Bashir FA, Alhemmali AM (2015) Analysis of some heavy metal in marine fish in muscle, liver and gill tissue in two marine fish spices from Kapar coastal waters, Malaysia. Second Symp Theor Appli Basic and Biosci 2(1):1–15

    Google Scholar 

  23. McIntyre DO, Linton TK, 2012. Arsenic. In: Wood CM, Farrel AP, Brauner CJ(eds.), Homeostasis and toxicology of non-essential metals. Fish Physiology 31. Elsevier, pp. 297–349.

  24. Plessl C, Gilbert BM, Sigmund MF, Theiner S, Avenant-Oldewage A, Keppler BK, Jirsa F (2019) Mercury, silver, selenium and other trace elements in three cyprinid fish species from the Vaal Dam, South Africa, including implications for fish consumers. Sci Total Environ 659:1158–1167

    Article  CAS  PubMed  Google Scholar 

  25. Juncos R, Arcagnia M, Squadrone S, Rizzo A, Arribére M, Barrigad JP, Battini MA, Campbell ML, Brizio P, Abete MC, Ribeiro Guevara S (2019) Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: organ distribution and arsenic speciation. Ecotoxicol Environ Saf 168:431–442

    Article  CAS  PubMed  Google Scholar 

  26. Azcue JM, Dixon DG (1994) Effects of past mining activities on the arsenic concentration in fish from Moira Lake. Ontario J Gt Lakes Res 20:717–724. https://doi.org/10.1016/S0380-1330(94)71189-8

    Article  CAS  Google Scholar 

  27. Espejo W, Padilha JA, Kidd KA, Dorneles PR, Barra R, Malm O, Chiang G, Celis JE (2018) Trophic transfer of cadmium in marine food webs from Western Chilean Patagonia and Antarctica. Mar Pollut Bull 137:246–251

    Article  CAS  PubMed  Google Scholar 

  28. Le Croizier G, Lacroix C, Artigaud S, Le Floch S, Munaron J, Raffray J, Penicaud V, Rouget M, Lae R, De Morais LT (2019) Metal subcellular partitioning determines excretion pathways and sensitivity to cadmium toxicity in two marine fish species. Chemosphere 217:754–762

    Article  PubMed  CAS  Google Scholar 

  29. Anderson ER, Shah YM (2013) Iron homeostasis in the liver. Compr Physiol 3(1):315–330

    PubMed  PubMed Central  Google Scholar 

  30. Ikemoto T, Tu NPC, Okuda N, Iwata A, Omori K, Tanabe S (2008) Biomagnification of trace elements in the aquatic food web in the Mekong Delta, South Vietnam, using stable carbon and nitrogen isotope analysis. Arch Environ Contam Toxicol 54:504–515

    Article  CAS  PubMed  Google Scholar 

  31. Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu S (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    Article  CAS  PubMed  Google Scholar 

  32. Li JZ, Zhao JT, Fang HB, Liu T, Zhang LX, Fang YT (2017) Transformation behavior of vanadium in petroleum coke during high temperature CO2-gasification. Fuel 194:83–90

    Article  CAS  Google Scholar 

  33. Wang L, Zhang X, Wu L, Liu Q, Zhang D, Yin J (2018) Expression of selenoprotein genes in muscle is crucial for the growth of rainbow trout (Oncorhynchus mykiss) fed diets supplemented with selenium yeast. Aquaculture 492:82–90

    Article  CAS  Google Scholar 

  34. Gul S, Belge-Kurutas E, Yildiz E, Sahan A, Doran F (2004) Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake. Turkey Environ Int 30:605–609

    Article  CAS  PubMed  Google Scholar 

  35. Aboul-Ela HM, Saad AA, El-Sikaily AMA, Zaghloul TI (2011) Oxidative stress and DNA damage in relation to transition metals overload in Abu-Qir Bay. Egypt JGenet Eng Biotechnol 9(1):51–58

    Article  CAS  Google Scholar 

  36. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    Article  CAS  Google Scholar 

  37. Squadrone S, Burioli E, Monaco G, Koya MK, Prearo M, Gennero S, Dominici A, Abete MC (2016b) Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (D.R. Congo). Sci Total Environ 568:679–684

    Article  CAS  PubMed  Google Scholar 

  38. Blewett TA, Wood CM, Glover CN (2016) Salinity-dependent nickel accumulation and effects on respiration, ion regulation and oxidative stress in the galaxiid fish, Galaxias maculatus. Environ Pollut 214:132–141

    Article  CAS  PubMed  Google Scholar 

  39. Kruck TP, Fisher EA, Lachlan M (1990) Suppression of deferoxamine mesylate treatment induced side effect by administration of isoniazid in a patient with Alzheimer’s disease subject to aluminium removal by ionspecific chelation. Clin Phrmacol Ther 48:439–446

    Article  CAS  Google Scholar 

  40. Yılmaz AB, Sangun MK, Yaglıoglu D, Turan C (2010) Metals (major, essential to non-essential) composition of the different tissues of three demersal fish species from Iskenderun Bay, Turkey. Food Chem 123:410–415

    Article  CAS  Google Scholar 

  41. Hong S, Candelone J-P, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265:1841–1843

    Article  CAS  PubMed  Google Scholar 

  42. Garçon G, Leleu B, Marez T, Zerimech F, Haguenoer JM, Furon D, Shirali P (2007) Biomonitoring of the adverse effects induced by the chronic exposure to lead and cadmium on kidney function: usefulness of alpha-glutathione S-transferase Sci. Total Environ 377(2007):165–172

    Article  CAS  Google Scholar 

  43. Kim JH, Kang JC (2016) The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium (Cr6+) concentrations. Environ Toxicol Pharmacol 41:152–158

    Article  CAS  PubMed  Google Scholar 

  44. Campbell LL, Fisk AT, Wang X, Köck G, Muir DCG (2005) Evidence for biomagnification of rubidium in freshwater and marine food webs. Can J Fish Aquat Sci 62:1161–1167

    Article  CAS  Google Scholar 

  45. COMMISSION REGULATION (EC) No 1881/2006 of 19 2006. Setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L 364/5-36424.

  46. NC 493:2008. (2008). Metallic contaminants in food (p. 7). Sanitary regulations. Cuban National Bureau of Standard.

  47. NC (2006) Norma Cubana-493. Metallic contaminant in food–sanitary regulation. Cuban national bureau of standards.

  48. Fernandez-Maestre, R., Johnson-Restrepo, B., Olivero-Verbel, J., 2018. Heavy metals in sediments and fish in the Caribbean coast of Columbia: assessing the environmental risk.

  49. Fischer Walker C, Kordas K, Stoltzfus RJ, Black RE (2005) Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials. Am J Clin Nutr 82:5–12

    Article  PubMed  Google Scholar 

  50. European Food Safety Authority (EFSA) (2014) Scientific opinion on dietary reference values for zinc. EFSA J 12(10):3844

    Article  CAS  Google Scholar 

  51. Mayfield DB, Fairbrother A (2015) Examination of rare earth element concentration patterns in freshwater fish tissues. Chemosphere 120:68–74

    Article  CAS  PubMed  Google Scholar 

  52. MacMillan GA, Chételat J, Heath J, Mickpegak R, Amyot M (2017) Rare earth elements (REE) in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. Environ Sci Process Impacts 19(10):1336–1345

    Article  CAS  PubMed  Google Scholar 

  53. Amyot M, Clayden M, McMillan G, Perron T, Arscott-Gauvin A (2017) Fate and trophic transfer of rare earth elements in temperate lake food webs. Environ Sci Technol 51(11):6009–6017

    Article  CAS  PubMed  Google Scholar 

  54. Yang LP, Wang XN, Nie HQ, Shao LJ, Wang GL, Liu YJ (2016) Residual levels of rare earth elements in freshwater and marine fish and their health risk assessment from Shandong, China. Mar Pollut Bull 107(1):393–397

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Zheng L, Sun C, Jiang F, Yin X, Chen J, Han B, Wang X (2016) Study on ecological and chemical properties of rare earth elements in tropical marine organisms. Chin J Anal Chem 44(10):1539–1546

    Article  CAS  Google Scholar 

  56. Guo W-D, Hu M-H, Yang Y-P, Gong Z-B, Wu Y-M, (2003). Characteristics of ecological chemistry of rare earth elements in fish from Xiamen bay. Oceanologia 241–248.

  57. Squadrone S, Brizio P, Stella C, Mantia M, Battuello M, Nurra N, Mussat Sartor R, Orusa R, Robetto S, Brusa F, Mogliotti P, Garrone A, Abete MC (2019) Rare earth elements in marine and terrestrial matrices of Northwestern Italy: implications for food safety and human health. Sci Total Environ 660:1383–1391

    Article  CAS  PubMed  Google Scholar 

  58. Schwabe A, Meyer U, Grun M, Voigt KD, Flachowsky G, Danicke S (2012) Effect of rare earth elements (REE) supplementation to diets on the carry-over into different organs and tissues of fattening bulls. Livest Sci 143:5–14

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and the two anonymous reviewers that greatly improved the manuscript quality.

Funding

This research was funded by the Italian Health Ministry Research Grants (Project n. IZS PLV 01/13RC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Squadrone.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 42 kb)

ESM 2

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squadrone, S., Brizio, P., Stella, C. et al. Differential Bioaccumulation of Trace Elements and Rare Earth Elements in the Muscle, Kidneys, and Liver of the Invasive Indo-Pacific Lionfish (Pterois spp.) from Cuba. Biol Trace Elem Res 196, 262–271 (2020). https://doi.org/10.1007/s12011-019-01918-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01918-w

Keywords

Navigation