Skip to main content

Advertisement

Log in

Effect of Low-Level Laser on Some Metals Related to Redox State and Histological Alterations in the Liver and Kidney of Irradiated Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) is a type of medicine that uses laser light at low levels to activate the cellular chromophores and the initiation of cellular signaling. This study aimed to evaluate the photomodulation effect of LLL against ionizing radiation (IR)–induced metal disorders related to redox state in the liver and kidney of male rats. Rats were divided into 4 groups (control, LLLT, IR (7Gy), IR+LLLT). The results showed that LLLT 870 nm one time for 3 days post-irradiation revealed redistribution of iron (Fe), copper (Cu), zinc (Zn),calcium (Ca), magnesium (Mg), manganese (Mn), and selenium (Se) in the liver and kidney tissues. Moreover, LLLT attenuated the oxidative stress manifested by a marked reduction of hydrogen peroxide (H2O2), 4-hydroxynonenal (4-HNE), total oxidant state (TOS), and oxidative stress index (OSI) associated with a significant increase in total antioxidant status (TAS), glutathione (GSH) content, and glutathione peroxide (GPx), glutathione reductase (GRx), superoxide dismutase(SOD), and catalase (CAT) activities. Moreover, LLLT displayed an increase in glutathione-S-transferase (GSH-T) and ceruloplasmin activities and a decrease in the activity of gamma-glutamyl transferase (γ-GT). Besides, LLLT significantly attenuated the histological changes in the liver and kidney tissues, denoted by a reduction in the necrotic and degenerative changes of hepatocytes and an improvement in the corpuscles and tubules of the kidney. In conclusion, LLLT could be used as an adjuvant treatment post-exposure to radiation, while it is not beneficial to use it on the normal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stone HB, Coleman CN, Anscher MS, McBride WH (2003) Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 4(9):529–536

    Article  CAS  PubMed  Google Scholar 

  2. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation reduction reaction and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23(3–4):311–322

    Article  CAS  PubMed  Google Scholar 

  4. Muñoz SJL (2009) Defensas antioxidants endógenas. In: Morales-Gonzalez, Fernán-dez SAM, Bautista AM, Vargas MN, Madrigal-Santillán EO (eds) Los antioxi-dantes y lasenfermedadescrónicodefenerativas. Universidad Autónomadel Estado de Hidalgo, México, pp 93–118

    Google Scholar 

  5. Hosseinimehr SJ (2015) The protective effects of trace elements against side effects induced by ionizing radiation. Radiat Oncol J 33(2):66–74

    Article  PubMed  PubMed Central  Google Scholar 

  6. Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674(1–2):137–147

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Gladyshev VN (2011) Comparative genomics of trace element dependence in biology. J Biol Chem 286(27):23623–23629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharif R, Thomas P, Zalewski P, Fenech M (2012) The role of zinc in genomic stability. Mutat Res 733(1–2):111–121

    Article  CAS  PubMed  Google Scholar 

  9. Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 60(7):421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tabassum A, Bristow RG, Venkateswaran V (2010) Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: a good thing? Cancer Treat Rev 36(3):230–234

    Article  CAS  PubMed  Google Scholar 

  11. Da Silva JP, Da Silva MA, Almeida APF, Junior IL, Matos AP (2010) Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg 28(1):17–21

    Article  PubMed  Google Scholar 

  12. de BritoBitencourt G, Gonçalves MLL, Kobayashi FY, Motta LJ, Silva DFTD, Politti F, Paulino Feliciano L, Mesquita-Ferrari RA, Fernandes KPS, Bussadori SK (2018) Administration of low-level laser on muscles of mastication following the induction of initial fatigue: protocol for a randomized, controlled, clinical trial. Medicine (Baltimore) 97(26):e11340

    Article  Google Scholar 

  13. Mikhail FF, El-Din M, Ibrahim T, Zekry K, Nemat A, Nasry S (2018) Effect of laser therapy on the osseointegration of immediately loaded dental implants in patients under vitamin c, omega-3 and calcium therapy. Open Access Maced J Med Sci 6(8):1468–1474

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oron U, Maltz L, Tuby H, Sorin V, Czerniak A (2010) Enhanced liver regeneration following acute hepatectomy by low-level laser therapy. Photomed Laser Surg 28(5):675–678

    Article  CAS  PubMed  Google Scholar 

  15. Beutler E, Duron O, Kelly MB (1963) Improved method for determination of blood glutathione reduced. J La Clin Med 61:882–888

    CAS  Google Scholar 

  16. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Laborat Clin Med 70(1):158–169

    CAS  Google Scholar 

  17. Dolphin D, Poulson R, Avramovic O (eds) (1989) Glutathione: chemical, biochemical, and medical aspects, parts A and B, coenzyme and cofactors series, vol. III. John Wiley, New York

  18. Rosalki SB (1975) Gamma-glutamyl transpeptidase. Adv Clin Chem 17:53–107

    Article  CAS  PubMed  Google Scholar 

  19. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  20. Minami M, Yoshikawa H (1979) A simplified assay method of superoxide dismutase activity for clinical use. Clin Chem Acta 92(3):337–342

    Article  CAS  Google Scholar 

  21. Kingston HM, Jassie LB (1988) Microwave acid sample decomposition for elemental analysis. J Res Natl Bur Stan 93(3):269–274

    Article  CAS  Google Scholar 

  22. Bancroft JD, Stevens AE (1996) Theory and practice of histological techniques, 4th edn. Churchill Livingstone, Edinburgh, p 766

    Google Scholar 

  23. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014(6):360438

    Google Scholar 

  24. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    Article  CAS  PubMed  Google Scholar 

  25. Sane MR, Malukani K, Kulkarni R, Varun A (2018) Fatal iron toxicity in an adult: clinical profile and review. Indian J Crit Care Med 22(11):801–803

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Forman HJ, Choi J (2005) Gamma-glutamyltranspeptidase in glutathione biosynthesis. Meth Enzymol 401:468–483

    Article  CAS  Google Scholar 

  27. Wada O (2004) What are trace elements?-their deficiency and excess state. JMAJ 47(8):351–358

    Google Scholar 

  28. Sabuncuoglu S, Eken A, Aydin A, Ozgunes H, Orhan H (2015) Cofactor metals and antioxidant enzymes in cisplatin-treated rats: effect of antioxidant intervention. Drug Chem Toxicol 38(4):375–382

    Article  CAS  PubMed  Google Scholar 

  29. Hampton JK Jr, Mayerson HS (1950) Hemoglobin iron as a stimulus for the production of ferritin by the kidney. Am J Physiol 160(1):1–8

    Article  CAS  PubMed  Google Scholar 

  30. Atkinson MJ, Spanner MT, Rosemann M, Linzner V, Muller WA, Gossner W (2005) Intracellular sequestration of 223Ra by the iron-storage protein ferritin. Rad Res 164(2):230–233

    Article  CAS  Google Scholar 

  31. Naz N, Ahmad S, Cameron S, Moriconi F, Rave-Fränk M, Christiansen H, Hess CF, Ramadori G, Malik IA (2013) Differential regulation of ferritin subunits and iron transport proteins: an effect of targeted hepatic X-irradiation. Biomed Res Int 2013:353106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Abdelhalim MA, Al-Ayed MS, Moussa SA, Ael-H AA-S (2015) The effects of gamma-radiation on red blood cell corpuscles and dimensional properties in rats. Pak J Pharm Sci 28(5 Suppl):1819–1822

    CAS  PubMed  Google Scholar 

  33. Abdou MI, Shaban HA (2010) Changes in serum zinc, copper and ceruloplasmin levels of whole body gamma irradiated rats. Tenth Radiation Physics & Protection Conference, 27-30 November 2010, Nasr City - Cairo, Egypt

  34. Xie LH, Zhang XH, Hu XD, Min XY, Zhou QF, Zhang HQ (2016) Mechanisms of an increased level of serum iron in gamma-irradiated mice. Radiat Environ Biophys 55(1):81–88

    Article  CAS  PubMed  Google Scholar 

  35. Nada AS, Gharib OA, Noaman E, Amin NE (2008) Early signs of trace element alteration induced by environmental pollutants and radiation exposure in rats. Egypt J Radiat Sci Appl 21(2):515

    Google Scholar 

  36. Sorenson JRJ (2002) Cu, Fe, Mn and Zn chelates offer a medicinal chemistry approach to overcoming radiation injury. Curr Med Chem 9(6):639–662

    Article  CAS  PubMed  Google Scholar 

  37. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  CAS  PubMed  Google Scholar 

  38. Louvet L, Bazin D, Büchel J, Steppan S, Passlick-Deetjen J, Massy ZA (2015) Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium. PLoS One 10(1):e0115342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jensen TP, Buckby LE, Empson RM (2004) Expression of plasma membrane Ca2+ ATPase family members and associated synaptic proteins in acute and cultured organotypic hippocampal slices from rat. Brain Res Dev Brain Res 152(2):129–136

    Article  CAS  PubMed  Google Scholar 

  40. Puspitasari IM, Abdulah R, Yamazaki C, Kameo S, Nakano T, Koyama H (2014) Updates on clinical studies of selenium supplementation in radiotherapy. Radiat Oncol 29(9):125

    Article  Google Scholar 

  41. Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de CarvalhoPde T, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30(1):59–66

    Article  PubMed  Google Scholar 

  42. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. RV G¸a, Novaes RD, Cupertino Mdo C, Moraes B, Leite JP, PeluzioMdo C, Pinto MV, da Matta SL (2013) Time dependent effects of low-level laser therapy on the morphology and oxidative response in the skin wound healing in rats. Lasers Med Sci 28(2):383–390

    Article  Google Scholar 

  44. Abdul-Aziz KK, Tuorkey MJ (2010) Argon laser phototherapy could eliminate the damage effects induced by the ionizing radiation “gamma radiation” in irradiated rabbits. J Photochem Photobiol B 99(1):29–35

    Article  CAS  PubMed  Google Scholar 

  45. Guaraldo SA, Serra AJ, Amadio EM, Antônio EL, Silva F, Portes LA, Tucci PJ, Leal-Junior EC, de CarvalhoPde T (2016) The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise. Lasers Med Sci 31(5):833–840

    Article  PubMed  Google Scholar 

  46. Rupel K, Zupin L, Colliva A, Kamada A, Poropat A, Ottaviani G, Gobbo M, Fanfoni L, Gratton R, Santoro M, Di Lenarda R, Biasotto M, Zacchigna S (2018) Photobiomodulation at multiple wave lengths differentially modulates oxidative stress in vitro and in vivo. Oxidative Med Cell Longev 2018:6510159

    Article  CAS  Google Scholar 

  47. Astuti SD, Prasaja BI, Prijo TA (2017) An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction. J Phys Conf Ser 853:012038

    Article  CAS  Google Scholar 

  48. Oliveira-Junior MC, Monteiro AS, Leal-Junior EC, Munin E, Osório RA, Ribeiro W, Vieira RP (2013) Low-level laser therapy ameliorates CCl4-induced liver cirrhosis in rats. Photochem Photobiol 89(1):173–178

    Article  PubMed  CAS  Google Scholar 

  49. de Oliveira HA, Antonio EL, Arsa G, Santana ET, Silva FA, Júnior DA, Dos Santos S, de Carvalho PTC, Leal-Junior ECP, Araujo A, De Angelis K, Bocalini DS, Junior JAS, Tucci PJF, Serra AJ (2018) Photobiomodulation leads to reduced oxidative stress in rats submitted to high-intensity resistive exercise. Oxidative Med Cell Longev 2018:5763256

    Google Scholar 

  50. Godoy YPA, Gerson S, Pinto MS, Boff MF, Mascarenhas MÁ, Cardoso VV (2017) Functional and cellular evaluation of the liver after low-power laser stimulation during surgery. Arq Bras Cir Dig 30(2):122–126

    Article  PubMed  PubMed Central  Google Scholar 

  51. Takhtfooladi MA, Takhtfooladi HA, Khansari M (2014) The effects of low-intensity laser therapy on hepatic ischemia-reperfusion injury in a rat model. Lasers Med Sci 29(6):1887–1893

    Article  PubMed  Google Scholar 

  52. Awasthi YC, Yang Y, Tiwari NK, Patrick B, Sharma A, Li J, Awasthi S (2004) Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases. Free Radic Biol Med 37(5):607–619

    Article  CAS  PubMed  Google Scholar 

  53. Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278(42):40917–40922

    Article  CAS  PubMed  Google Scholar 

  54. Beirne K, Rozanowska M, Votruba M (2017) Photostimulation of mitochondria as a treatment for retinal neurodegeneration. Mitochondrion 36:85–95

    Article  CAS  PubMed  Google Scholar 

  55. Machneva TV, Bulgakova NN, VladimirovIuA OAN (2010) Role of endogenous porphyrins in laser therapy of experimental skin wounds. Biofizika 55(3):532–538

    CAS  PubMed  Google Scholar 

  56. Walski T, Drohomirecka A, Bujok J, Czerski A, Wąż G, Trochanowska-Pauk N, Gorczykowski M, Cichoń R, Komorowska M (2018) Low-level light therapy protects red blood cells against oxidative stress and hemolysis during extracorporeal circulation. Front Physiol 9:647

    Article  PubMed  PubMed Central  Google Scholar 

  57. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361

    Article  CAS  PubMed  Google Scholar 

  58. Oliveira FA, Moraes AC, Paiva AP, Schinzel V, Correa-Costa M, Semedo P, Castoldi A, Cenedeze MA, Oliveira RS, Bastos MG, Câmara NO, Sanders-Pinheiro H (2012) Low-level laser therapy decreases renal interstitial fibrosis. Photomed Laser Surg 30(12):705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Abdel-Magied.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the Research Ethics Committee (REC) for experimental studies (Human and Animal subjects) at the National Center for Radiation Research and Technology—Egyptian Atomic Energy Authority, Cairo, following the 3R principles for animal experimentation (Replace, Reduce, and Refine), and is organized and operated according to CIOMS and ICLAS International Guiding Principles for Biomedical Research Involving Animals 2012, Serial No. 6A/19.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Magied, N., Elkady, A.A. & Abdel Fattah, S.M. Effect of Low-Level Laser on Some Metals Related to Redox State and Histological Alterations in the Liver and Kidney of Irradiated Rats. Biol Trace Elem Res 194, 410–422 (2020). https://doi.org/10.1007/s12011-019-01779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01779-3

Keywords

Navigation