Skip to main content

Advertisement

Log in

Variation in Blood and Colorectal Epithelia’s Key Trace Elements Along with Expression of Mismatch Repair Proteins from Localized and Metastatic Colorectal Cancer Patients

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 22 October 2020

A Correction to this article was published on 22 June 2019

This article has been updated

Abstract

Colorectal cancer (CRC) is an increasingly common medical issue affecting millions worldwide, and contribution of the body’s trace elements to CRC is arguable. The concentrations and buffered status of selenium, iron, copper, zinc, and phosphorus in blood and large intestinal tissues of CRC patients are, respectively, variable and vital for cell physiology. The aim of this study was to assess selenium, iron, copper, zinc, and phosphorus variations in blood and colorectal epithelia along with examining the expression of mismatch repair proteins in CRC patients with/without metastasis for potential diagnosis/therapy. Concentrations of selenium, iron, copper, zinc, and phosphorus in blood of healthy versus CRC patients and colorectal epithelia (adenocarcinomatous versus non-adenocarcinomatous/control) were measured in 40 CRC patients (55.87 ± 11.9 years old) with/without metastasis before surgery using ICP-OES. Mismatch repair (MMR) protein expression was analyzed through histopathological/immunohistochemistry assays, which was sparse in 5 CRC patient’s colorectal tissues (12%). Compared with healthy individuals, blood and colorectal tissue’s levels of phosphorus, copper, and iron were significantly higher in the CRC patients, and more pronounced in metastatic CRC patients; conversely, blood and colorectal tissue’s selenium levels were significantly lower in metastatic patients. Unlike blood zinc, cancerous colorectal tissue’s zinc concentration was significantly lower in CRC patients compared to healthy control cohorts. There was no significant difference on the measured elements in samples from CRC patients with MMR compared to CRC patients with MMR+. Receiver operating characteristic analysis revealed a correlation of blood iron, zinc, copper, and phosphorus to CRC, and inappropriately low levels of blood and colorectal selenium correlated with exacerbated metastasis. Altered levels of selenium, iron, copper, zinc, and phosphorus in vivo may impact the pathogenesis and detection of CRC, and their diagnostic/therapeutic potential in CRC would be revealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 22 June 2019

    The original version of this article unfortunately contained a mistake. The name of “Ali Ghorbani Ranjbary” is now corrected in the author group of this article. The original article has been corrected.

  • 22 October 2020

    The original version of this article unfortunately contained a mistake.

References

  1. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, Spain S, Lubbe S, Walther A, Sullivan K, Jaeger E (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23. Nat Genet 40(5):623–631

    CAS  PubMed  Google Scholar 

  2. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol-Mech 6:479–507

    CAS  Google Scholar 

  3. Bertagnolli MM, Redston M, Compton CC, Niedzwiecki D, Mayer RJ, Goldberg RM, Colacchio TA, Saltz LB, Warren RS (2011) Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer-a study of CALGB 9581 and 89803. J Clin Oncol 29(23):3153–3165

    PubMed  PubMed Central  Google Scholar 

  4. Brennan CA, Garrett WS (2016) Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 70:395–411

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Grothey A (2018) Highlights in metastatic colorectal cancer from the 2018 American Society of Clinical Oncology Gastrointestinal Cancers Symposium: commentary. Clin Adv Hematol Oncol 16(3):20–23

    PubMed  Google Scholar 

  6. Mitry E, Guiu B, Cosconea S, Jooste V, Faivre J, Bouvier AM (2010) Epidemiology, management and prognosis of colorectal cancer with lung metastases: a 30-year population-based study. Gut 59(10):1383–1388

    PubMed  Google Scholar 

  7. Metcalfe MJ, Petros FG, Rao P, Mork ME, Xiao L, Broaddus RR, Matin SF (2018) Universal point of care testing for lynch syndrome in patients with upper tract urothelial carcinoma. J Urol 199(1):60–65

    PubMed  Google Scholar 

  8. Donald ND, Malik S, McGuire JL, Monahan KJ (2016) The association of low penetrance genetic risk modifiers with colorectal cancer in lynch syndrome patients: a systematic review and meta-analysis. JGH 150(4):S655

    Google Scholar 

  9. Schafmayer C, Buch S, Egberts JH, Franke A, Brosch M, Sharawy A, Conring M, Koschnick M, Schwiedernoch S, Katalinic A, Kremer B (2007) Genetic investigation of DNA-repair pathway genes PMS2, MLH1, MSH2, MSH6, MUTYH, OGG1 and MTH1 in sporadic colon cancer. Int J Cancer 121(3):555–558

    CAS  PubMed  Google Scholar 

  10. Geiersbach KB, Samowitz WS (2011) Microsatellite instability and colorectal cancer. Arch Pathol Lab Med 135(10):1269–1277

    CAS  PubMed  Google Scholar 

  11. Lipkin SM, Rozek LS, Rennert G, Yang W, Chen PC, Hacia J, Hunt N, Shin B, Fodor S, Kokoris M, Greenson JK (2004) The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nat Genet 36(7):694–700

    CAS  PubMed  Google Scholar 

  12. Söreide K, Janssen EA, Söiland H, Körner H, Baak JP (2006) Microsatellite instability in colorectal cancer. BJS 93(4):395–406

    Google Scholar 

  13. Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281(41):30305–30309

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Marginean EC, Melosky B (2017) Is there a role for programmed death ligand-1 testing and immunotherapy in colorectal cancer with microsatellite instability? Part I colorectal cancer: microsatellite instability, testing, and clinical implications. Arch Pathol Lab Med 142(1):17–25

    PubMed  Google Scholar 

  15. Hosono K, Endo H, Takahashi H, Rner HK, Baak JP (2010) Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res 3(9):1077–1083

    CAS  Google Scholar 

  16. Bonadona V, Bonaïti B, Olschwang S, Grandjouan S, Huiart L, Longy M, Guimbaud R, Buecher B, Bignon YJ, Caron O, Colas C (2011) Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305(22):2304–2310

    CAS  PubMed  Google Scholar 

  17. O’hagan HM, Ljungman M (2004) Efficient NES-dependent protein nuclear export requires ongoing synthesis and export of mRNAs. Exp Cell Res 297(2):548–559

    PubMed  Google Scholar 

  18. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18(6):1660–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Joehlin-Price AS, Perrino CM, Stephens J, Backes FJ, Goodfellow PJ, Cohn DE, Suarez AA (2014) Mismatch repair protein expression in 1049 endometrial carcinomas, associations with body mass index, and other clinicopathologic variables. Gynecol Oncol 133(1):43–47

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Colussi D, Brandi G, Bazzoli F, Ricciardiello L (2013) Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci 14(8):16365–16385

    PubMed  PubMed Central  Google Scholar 

  21. Lin CN, Wang LH, Shen KH (2009) Determining urinary trace elements (Cu, Zn, Pb, As, and Se) in patients with bladder cancer. J Clin Lab Anal 23:192–195

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferrigno D, Buccheri G, Camilla T (1999) Serum copper and zinc content in non-small cell lung cancer: abnormalities and clinical correlates. Monaldi Arch Chest Dis 54:204–208

    CAS  PubMed  Google Scholar 

  23. Songchitsomboon S, Komindr S, Komindr A, Kulapongse S, Puchaiwatananon O, Udomsubpayakul U (1999) Serum copper and zinc levels in Thai patients with various diseases. J Med Assoc Thail 82:701–706

    CAS  Google Scholar 

  24. Lin LC, Que J, Lin LK, Lin FC (2006) Zinc supplementation to improve mucositis and dermatitis in patients after radiotherapy for head-and-neck cancers: a double-blind, randomized study. Int J Radiat Oncol Biol Phys 65:745–750

    CAS  PubMed  Google Scholar 

  25. Sohrabi M, Gholami A, Azar MH, Yaghoobi M, Shahi MM, Shirmardi S, Nikkhah M, Kohi Z, Salehpour D, Khoonsari MR, Hemmasi G (2018) Trace element and heavy metal levels in colorectal cancer: comparison between cancerous and non-cancerous tissues. Biol Trace Elem Res 83(1):1–8

    Google Scholar 

  26. Kieliszek M, Lipinski B (2018) Pathophysiological significance of protein hydrophobic interactions: an emerging hypothesis. Med Hypotheses 1(110):15–22

    Google Scholar 

  27. Kieliszek M, Lipinski B, Błażejak S (2017) Application of sodium selenite in the prevention and treatment of cancers. Cells 6(4):39

    PubMed Central  Google Scholar 

  28. Lipinski B (2005) Rationale for the treatment of cancer with sodium selenite. Med Hypotheses 64(4):806–810

    CAS  PubMed  Google Scholar 

  29. Ibeagha AE, Ibeagha-Awemu EM, Mehrzad J, Baurhoo B, Kgwatalala P, Zhao X (2009) The effect of selenium sources and supplementation on neutrophil functions in dairy cows. Animal 3(7):1037–1043

    CAS  PubMed  Google Scholar 

  30. Martín-López JV, Fishel R (2013) The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Familial Cancer 12(2):159–168

    PubMed  PubMed Central  Google Scholar 

  31. Klimczak M, Dziki A, Kilanowicz A, Sapota A, Duda-Szymańska J, Daragó A (2016) Concentrations of cadmium and selected essential elements in malignant large intestine tissue. PRZ Gastroenterolo 11(1):24

    CAS  Google Scholar 

  32. Nicastri A, Gaspari M, Sacco R, Elia L, Gabriele C, Romano R, Rizzuto A, Cuda G (2014) N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue. J Proteome Res 13(11):4932–4941

    CAS  PubMed  Google Scholar 

  33. Diniz G, Aktas S, Cubuk C, Ortac R, Vergin C, Olgun N (2013) Tissue expression of MLH1, PMS2, MSH2, and MSH6 proteins and prognostic value of microsatellite instability in Wilms tumor: experience of 45 cases. Pediatr Hematol Oncol 30(4):273–284

    CAS  PubMed  Google Scholar 

  34. Jover R, Payá A, Alenda C, Poveda MJ, Peiró G, Aranda FI, Pérez-Mateo M (2004) Defective mismatch-repair colorectal cancer: clinicopathologic characteristics and usefulness of immunohistochemical analysis for diagnosis. Am J Clin Pathol 122:389–394

    CAS  PubMed  Google Scholar 

  35. Mangold E, Pagenstecher C, Friedl W, Mathiak M, Buettner R, Engel C, Loeffler M, Holinski-Feder E, Müller-Koch Y, Keller G, Schackert HK (2005) Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 116(5):692–702

    CAS  PubMed  Google Scholar 

  36. Engel C, Rahner N, Schulmann K, Holinski–Feder E, Goecke TO, Schackert HK, Kloor M, Steinke V, Vogelsang H, Möslein G, Görgens H (2010) Efficacy of annual colonoscopic surveillance in individuals with hereditary nonpolyposis colorectal cancer. Clin Gastroenterol Hepatol 8(2):174–182

    PubMed  Google Scholar 

  37. Salehi M, Amani S, Javan S, Emami MH, Salamat MR, Nouri DM (2009) Evaluation of MLH1 and MSH2 gene mutations in a subset of Iranian families with hereditary nonpolyposis colorectal cancer (HNPCC). J Sci I R Iran 20(1):7–12

    CAS  Google Scholar 

  38. Plazzer JP, Sijmons RH, Woods MO, Peltomäki P, Thompson B, den Dunnen JT, Macrae F (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Familial Cancer 12(2):175–180

    CAS  PubMed  Google Scholar 

  39. Fouani L, Menezes SV, Paulson M, Richardson DR, Kovacevic Z (2017) Metals and metastasis: exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacol Res 115:275–287

    CAS  PubMed  Google Scholar 

  40. Ninsontia C, Phiboonchaiyanan PP, Chanvorachote P (2016) Zinc induces epithelial to mesenchymal transition in human lung cancer H460 cells via superoxide anion-dependent mechanism. Cancer Cell Int 16(1):48

    PubMed  PubMed Central  Google Scholar 

  41. Ramirez CP, Fiedler D (2014) Investigating the role of inorganic phosphate in tumor metabolism and metastasis. Cancer Metab 2(1):55

    Google Scholar 

  42. Kwok JC, Richardson DR (2002) The iron metabolism of neoplastic cells: alterations that facilitate proliferation? Crit Rev Oncol Hematol 42(1):65–78

    PubMed  Google Scholar 

  43. Anderson JJ (2013) Potential health concerns of dietary phosphorus: cancer, obesity, and hypertension. Ann N Y Acad Sci 1301(1):1–8

    CAS  PubMed  Google Scholar 

  44. Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I (2017) Zinc transporters and dysregulated channels in cancers. Front Biosci-Landmrk 22:623–643

    CAS  Google Scholar 

  45. Ishida ST (2017) Bacteriolyses of bacterial cell walls by Cu (II) and Zn (II) ions based on antibacterial results of dilution medium method and halo antibacterial test. Int J Adv Biotechnol Res 2:1–2

    Google Scholar 

  46. Ishida T (2018) Antiviral activities of Cu2+ ions in viral prevention, replication, RNA degradation, and for antiviral efficacies of lytic virus, ROS-mediated virus, Copper Chelation. key-title. World Sci 99:148–168

    CAS  Google Scholar 

  47. Chen YC, Prabhu KS, Mastro AM (2013) Is selenium a potential treatment for cancer metastasis? Nutrition 5(4):1149–1168

    Google Scholar 

  48. Selenius M, Rundlöf AK, Olm E, Fernandes AP, Björnstedt M (2010) Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxid Redox Signal 12(7):867–880

    CAS  PubMed  Google Scholar 

  49. Lavilla I, Costas M, San MP, Millos J, Bendicho C (2009) Elemental fingerprinting of tumorous and adjacent non-tumorous tissues from patients with colorectal cancer using ICP-MS, ICP-OES and chemometric analysis. Biometals 22(6):863–875

    CAS  PubMed  Google Scholar 

  50. Milde D, Altmannova K, Vyslouzil K, Stuzka V (2005) Trace element levels in blood serum and colon tissue in colorectal cancer. Chem Pap 59(3):157

    CAS  Google Scholar 

  51. Núñez O, Fernández-Navarro P, Martín-Méndez I, Bel-Lan A, Locutura Rupérez JF, López-Abente G (2017) Association between heavy metal and metalloid levels in topsoil and cancer mortality in Spain. Environ Sci Pollut Res Int 24(8):7413–7421

    PubMed  PubMed Central  Google Scholar 

  52. López-Abente G, Locutura-Rupérez J, Fernández-Navarro P, Bel-Lan A, Rupérez JF, López-Abente G (2018) Compositional analysis of topsoil metals and its associations with cancer mortality using spatial misaligned data. Environ Geochem Health 40(1):283–294

    PubMed  Google Scholar 

  53. Zhou L, Deng H, Wan J, Shi J, Su T (2013) A solvothermal method to produce RGO-Fe3O4 hybrid composite for fast chromium removal from aqueous solution. Appl Surf Sci 283:1024–1031

    CAS  Google Scholar 

  54. Castiella A, Múgica F, Zapata E, Zubiaurre L, Iribarren A, de Juan M, Alzate L, Gil I, Urdapilleta G, Otazua P, Emparanza JI (2015) Gender and plasma iron biomarkers, but not HFE gene mutations, increase the risk of colorectal cancer and polyps. Tumor Biol 36(9):6959–6963

    CAS  Google Scholar 

  55. Yu B, Du Q, Li H, Liu HY, Ye X, Zhu B, Zhai Q, Li XX (2017) Diagnostic potential of serum exosomal colorectal neoplasia differentially expressed long non-coding RNA (CRNDE-p) and microRNA-217 expression in colorectal carcinoma. Oncotarget 8(48):83745

    PubMed  PubMed Central  Google Scholar 

  56. Gîlcă-Blanariu GE, Diaconescu S, Ciocoiu M, Ștefănescu G (2018) New insights into the role of trace elements in IBD. Biomed Res Int 2018:1813047

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Per Hydbring for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Mehrzad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The original version of this article unfortunately contained a mistake. The name of “Ali Ghorbani Ranjbary” is now corrected in the author group of this article.

Clinical implications

This study showed that the levels of Se, Fe, Cu, Zn, and P in colorectal cancer (CRC) could be important for pinpointing the mechanism of CRC, CRC metastasis, and diagnosis. Although the levels of Fe, Cu, Zn, and P were not affected by the status of mismatch repair (MMR) proteins, levels of Se could play a role in regulating the oncoprotein load in large intestinal epithelia and thereby dictate CRC metastasis. The diagnostic potential of these elements in CRC would be revealing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbary, A.G., Mehrzad, J., Dehghani, H. et al. Variation in Blood and Colorectal Epithelia’s Key Trace Elements Along with Expression of Mismatch Repair Proteins from Localized and Metastatic Colorectal Cancer Patients. Biol Trace Elem Res 194, 66–75 (2020). https://doi.org/10.1007/s12011-019-01749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01749-9

Keywords

Navigation