Skip to main content

Advertisement

Log in

The Inverted U-Curve Association of Fluoride and Osteoclast Formation in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of fluoride on osteoclasts is still controversial. In the past, researchers thought that the effects of fluoride on osteoclast and osteoblast formation occurred in a dose-dependent pattern. However, our previous in vitro study showed fluoride elicited a notably different effect on osteoclast formation. To further verify the relationship between fluoride and osteoclast formation in vivo, 60 male C57BL/6 mice were randomly divided into three groups: two treatment groups consuming water supplemented with 50 and 100 mg/L of fluoride, and a third control group with nonsupplemented water. Ion selective electrode method analysis was used to detect bone fluoride content, and the effects of fluoride on bone tissue were assessed with hematoxylin and eosin (HE) staining. Additionally, the expression of BGP and ALP were examined by Western blot analysis, and tartrate-resistant acid phosphatase (TRAP) was assessed with immunohistochemistry. Osteoclasts in bone tissue were identified with a combination method of TRAP staining and cell morphology assessment. Results showed increasing expression of BGP among treatment groups as fluoride exposure increased, and ALP expression in the 100 mg/L treatment group was significantly higher than that for both the 50 mg/L treatment and control groups. The number of osteoclasts in the 50 mg/L group was highest amongst the three groups, followed by the 100 mg/L treatment and then by the control group, with the latter showing significantly fewer osteoclasts than in either treatment group. These results suggest that fluoride enhances bone formation at increasing levels of fluoride exposure. However, the inverted U-curve association was found between fluoride exposure and osteoclast formation, with the higher dose of fluoride having slightly reduced osteoclast formation. The results from this study may provide key insights towards understanding the role of osteoclasts in the progression of skeletal fluorosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tucci JR, Whitford GM, McAlister WH, Novack DV, Mumm S, Keaveny TM, Whyte MP (2017) Skeletal fluorosis due to inhalation abuse of a difluoroethane-containing computer cleaner. J Bone Miner Res Off J Am Soc Bone Miner Res 32(1):188–195. https://doi.org/10.1002/jbmr.2923

    Article  Google Scholar 

  2. Yu G, Sun D (2000) The condition and prevention of endemic fluorosis. China Public Health 16(10):938–939. https://doi.org/10.11847/zgggws2000-16-10-53

    Article  Google Scholar 

  3. Wang C, Gao Y, Wang W, Zhao L, Zhang W, Han H, Shi Y, Yu G, Sun D (2012) A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China. BMJ Open 2(5):e001564. https://doi.org/10.1136/bmjopen-2012-001564

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pei J, Li B, Liu Y, Liu X, Li M, Chu Y, Yang Q, Jiang W, Chen F, Darko GM, Yang Y, Gao Y (2017) Matrix metallopeptidase-2 gene rs2287074 polymorphism is associated with brick tea skeletal fluorosis in Tibetans and Kazaks, China. Sci Rep 7:40086. https://doi.org/10.1038/srep40086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chavassieux P, Seeman E, Delmas PD (2007) Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28(2):151–164. https://doi.org/10.1210/er.2006-0029

    Article  CAS  PubMed  Google Scholar 

  6. Bellows CG, Heersche JN, Aubin JE (1990) The effects of fluoride on osteoblast progenitors in vitro. J Bone Miner Res Off J Am Soc Bone Miner Res 5(Suppl 1):S101–S105. https://doi.org/10.1002/jbmr.5650051361

    Article  CAS  Google Scholar 

  7. Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET (2007) Genetic background influences fluoride’s effects on osteoclastogenesis. Bone 41(6):1036–1044. https://doi.org/10.1016/j.bone.2007.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hua K, Bu LS, Li GS (2003) Effects of fluoride on osteoclastic activity of rats in vitro. Chin J Prev Med 37(4):256–258

    CAS  Google Scholar 

  9. Okuda A, Kanehisa J, Heersche JN (1990) The effects of sodium fluoride on the resorptive activity of isolated osteoclasts. J Bone Miner Res Off J Am Soc Bone Miner Res 5(Suppl 1):S115–S120. https://doi.org/10.1002/jbmr.5650051381

    Article  CAS  Google Scholar 

  10. Abdelmagid SM, Sondag GR, Moussa FM, Belcher JY, Yu B, Stinnett H, Novak K, Mbimba T, Khol M, Hankenson KD, Malcuit C, Safadi FF (2015) Mutation in osteoactivin promotes receptor activator of NFκB ligand (RANKL)-mediated osteoclast differentiation and survival but inhibits osteoclast function. J Biol Chem 290(33):20128–20146. https://doi.org/10.1074/jbc.M114.624270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pei J, Li B, Gao Y, Wei Y, Zhou L, Yao H, Wang J, Sun D (2014) Fluoride decreased osteoclastic bone resorption through the inhibition of NFATc1 gene expression. Environ Toxicol 29(5):588–595. https://doi.org/10.1002/tox.21784

    Article  CAS  PubMed  Google Scholar 

  12. Pei J, Yao Y, Li B, Wei W, Gao Y, Darko GM, Sun D (2017) Excessive fluoride stimulated osteoclast formation through up-regulation of receptor activator for nuclear factor-κB ligand (RANKL) in C57BL/6 mice. Int J Clin Exp Med 10(11):15260–15268

    Google Scholar 

  13. Linkhart TA, Linkhart SG, Kodama Y, Farley JR, Dimai HP, Wright KR, Wergedal JE, Sheng M, Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1999) Osteoclast formation in bone marrow cultures from two inbred strains of mice with different bone densities. J Bone Miner Res Off J Am Soc Bone Miner Res 14(1):39–46. https://doi.org/10.1359/jbmr.1999.14.1.39

    Article  CAS  Google Scholar 

  14. Boyce BF, Wright K, Reddy SV, Koop BA, Story B, Devlin R, Leach RJ, Roodman GD, Windle JJ (1995) Targeting simian virus 40 T antigen to the osteoclast in transgenic mice causes osteoclast tumors and transformation and apoptosis of osteoclasts. Endocrinology 136(12):5751–5759. https://doi.org/10.1210/endo.136.12.7588333

    Article  CAS  PubMed  Google Scholar 

  15. Death C, Coulson G, Kierdorf U, Kierdorf H, Morris WK, Hufschmid J (2015) Dental fluorosis and skeletal fluoride content as biomarkers of excess fluoride exposure in marsupials. Sci Total Environ 533:528–541

    Article  CAS  PubMed  Google Scholar 

  16. Den Besten PK (1994) Dental fluorosis: its use as a biomarker. Adv Dent Res 8(1):105–110. https://doi.org/10.1177/08959374940080010201

    Article  Google Scholar 

  17. Sun F, Li X, Yang C, Lv P, Li G, Xu H (2014) A role for PERK in the mechanism underlying fluoride-induced bone turnover. Toxicology 325:52–66. https://doi.org/10.1016/j.tox.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  18. Gupta N, Chhabra P (2016) Image diagnosis: dental and skeletal fluorosis. Perm J 20(1):e105–e106

    PubMed  PubMed Central  Google Scholar 

  19. Li G (2000) Some conceptual problems in pathology of skeletal fluorosis. Chin J Endemiol 19(6):479–481. https://doi.org/10.3760/cma.j.issn.1000-4955.2000.06.029

    Article  Google Scholar 

  20. Liu Q, Liu H, Yu X, Wang Y, Yang C, Xu H (2016) Analysis of the role of insulin signaling in bone turnover induced by fluoride. Biol Trace Elem Res 171(2):380–390. https://doi.org/10.1007/s12011-015-0555-5

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi Y, Uehara S, Udagawa N, Takahashi N (2016) Regulation of bone metabolism by Wnt signals. J Biochem 159(4):387–392. https://doi.org/10.1093/jb/mvv124

    Article  CAS  PubMed  Google Scholar 

  22. Huo L, Liu K, Pei J, Yang Y, Ye Y, Liu Y, Sun J, Han H, Xu W, Gao Y (2013) Fluoride promotes viability and differentiation of osteoblast-like Saos-2 cells via BMP/Smads signaling pathway. Biol Trace Elem Res 155(1):142–149. https://doi.org/10.1007/s12011-013-9770-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen S, Li B, Lin S, Huang Y, Zhao X, Zhang M, Xia Y, Fang X, Wang J, Hwang SA, Yu S (2013) Change of urinary fluoride and bone metabolism indicators in the endemic fluorosis areas of southern China after supplying low fluoride public water. BMC Public Health 13:156. https://doi.org/10.1186/1471-2458-13-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song YE, Tan H, Liu KJ, Zhang YZ, Liu Y, Lu CR, Yu DL, Tu J, Cui CY (2011) Effect of fluoride exposure on bone metabolism indicators ALP, BALP, and BGP. Environ Health Prev Med 16(3):158–163. https://doi.org/10.1007/s12199-010-0181-y

    Article  CAS  PubMed  Google Scholar 

  25. Liu XL, Song J, Liu KJ, Wang WP, Xu C, Zhang YZ, Liu Y (2015) Role of inhibition of osteogenesis function by Sema4D/Plexin-B1 signaling pathway in skeletal fluorosis in vitro. J Huazhong Univ Sci Technol Med Sci 35(5):712–715. https://doi.org/10.1007/s11596-015-1495-1

    Article  CAS  Google Scholar 

  26. Pei J, Gao Y, Li B, Zhou L, Zhang Z, Sun D (2012) Effect of fluoride on osteoclast formation at various levels of receptor activator of nuclear factor kappa-B ligand (RANKL). Fluoride 45(2):86–93

    CAS  Google Scholar 

  27. Yu X, Yu H, Jiang N, Zhang X, Zhang M, Xu H (2018) PTH (1-34) affects bone turnover governed by osteocytes exposed to fluoride. Toxicol Lett 288:25–34. https://doi.org/10.1016/j.toxlet.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi N, Muto A, Arai A, Mizoguchi T (2010) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. Adv Exp Med Biol 658:21–30. https://doi.org/10.1007/978-1-4419-1050-9_3

    Article  CAS  PubMed  Google Scholar 

  29. Christenson RH (1997) Biochemical markers of bone metabolism: an overview. Clin Biochem 30(8):573–593

    Article  CAS  PubMed  Google Scholar 

  30. Turner CH, Garetto LP, Dunipace AJ, Zhang W, Wilson ME, Grynpas MD, Chachra D, Mcclintock R, Peacock M, Stookey GK (1997) Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits. Calcif Tissue Int 61(1):77–83

    Article  CAS  PubMed  Google Scholar 

  31. Fernandes Mda S, Yanai MM, Martins GM, Iano FG, Leite AL, Cestari TM, Taga R, Buzalaf MA, de Oliveira RC (2014) Effects of fluoride in bone repair: an evaluation of RANKL, OPG and TRAP expression. Odontology 102(1):22–30. https://doi.org/10.1007/s10266-012-0083-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Andrew M. Driscoll (651 Huntington Ave., Boston MA 02115 USA) for English editing of this manuscript.

Funding

This study was supported by the Nation Natural Science Foundation of China (Nos. 81773468 and 81302389), the Wu Liande Science Foundation of Harbin Medical University (Grant No. WLD-QN1703), and Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (LBH-Q17092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junrui Pei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Ma, Y., Zhong, N. et al. The Inverted U-Curve Association of Fluoride and Osteoclast Formation in Mice. Biol Trace Elem Res 191, 419–425 (2019). https://doi.org/10.1007/s12011-018-1624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1624-3

Keywords

Navigation